論文の概要: Exploiting Observation Bias to Improve Matrix Completion
- arxiv url: http://arxiv.org/abs/2306.04775v3
- Date: Tue, 31 Dec 2024 20:12:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 17:39:35.347437
- Title: Exploiting Observation Bias to Improve Matrix Completion
- Title(参考訳): マトリックスの完成度を向上する観察バイアスの爆発
- Authors: Yassir Jedra, Sean Mann, Charlotte Park, Devavrat Shah,
- Abstract要約: 観測パターンと興味の結果が、下層の潜在的(あるいは観測されていない)要因の同じセットによって駆動される自然モデルを提案する。
我々は,新しい2段階行列補完アルゴリズムであるMask Nearest Neighbor (MNN)を考案した。
分析の結果,MNNは,教師付き学習パラメトリックレートと競合するエントリーワイド有限サンプル誤差率を享受していることがわかった。
- 参考スコア(独自算出の注目度): 15.171759590760574
- License:
- Abstract: We consider a variant of matrix completion where entries are revealed in a biased manner. We wish to understand the extent to which such bias can be exploited in improving predictions. Towards that, we propose a natural model where the observation pattern and outcome of interest are driven by the same set of underlying latent (or unobserved) factors. We devise Mask Nearest Neighbor (MNN), a novel two-stage matrix completion algorithm: first, it recovers (distances between) the latent factors by utilizing matrix estimation for the fully observed noisy binary matrix, corresponding to the observation pattern; second, it utilizes the recovered latent factors as features and sparsely observed noisy outcomes as labels to perform non-parametric supervised learning. Our analysis reveals that MNN enjoys entry-wise finite-sample error rates that are competitive with corresponding supervised learning parametric rates. Despite not having access to the latent factors and dealing with biased observations, MNN exhibits such competitive performance via only exploiting the shared information between the bias and outcomes. Finally, through empirical evaluation using a real-world dataset, we find that with MNN, the estimates have 28x smaller mean squared error compared to traditional matrix completion methods, suggesting the utility of the model and method proposed in this work.
- Abstract(参考訳): 本稿では,行列補完の変種について考察する。
このようなバイアスが予測を改善するためにどの程度活用できるかを理解したい。
そこで本研究では、観測パターンと関心の結果が、下層の潜在的(あるいは観測されていない)要因の同じセットによって駆動される自然モデルを提案する。
そこで我々は,新しい2段階行列補完アルゴリズムであるMask Nearest Neighbor(MNN)を考案した。第1に,完全観測された雑音二乗行列の行列推定を,観測パターンに対応する行列推定に利用し,第2に,復元された遅延因子を特徴として利用し,疎観測された雑音の結果をラベルとして,非パラメトリック教師付き学習を行う。
分析の結果,MNNは,教師付き学習パラメトリックレートと競合するエントリーワイド有限サンプル誤差率を享受していることがわかった。
潜伏要因にアクセスできず、偏見的な観察に対処しても、MNNはバイアスと結果の間の共有情報のみを活用することで、このような競争性能を示す。
最後に、実世界のデータセットを用いた経験的評価により、MNNでは従来の行列補完法に比べて平均2乗誤差が28倍小さいことが判明し、本研究で提案したモデルと手法の有用性が示唆された。
関連論文リスト
- MANO: Exploiting Matrix Norm for Unsupervised Accuracy Estimation Under Distribution Shifts [25.643876327918544]
モデルのアウトプット、特にロジットを活用することは、トレーニング済みニューラルネットワークのテスト精度を、アウト・オブ・ディストリビューションのサンプルで推定する一般的なアプローチである。
実装の容易さと計算効率にもかかわらず、現在のロジットベースの手法は過信問題に弱いため、予測バイアスにつながる。
予測バイアスを低減するためにデータ依存正規化を適用したMaNoを提案し,正規化ロジットの行列の$L_p$ノルムを推定スコアとする。
論文 参考訳(メタデータ) (2024-05-29T10:45:06Z) - A Generalized Latent Factor Model Approach to Mixed-data Matrix
Completion with Entrywise Consistency [3.299672391663527]
マトリックスコンプリート(Matrix completion)は、部分的に観察された行列における欠落したエントリの予測に関する機械学習手法のクラスである。
非線型因子モデルの一般族の下での低ランク行列推定問題として定式化する。
低ランク行列を推定するためのエントリーワイドな一貫した推定器を提案する。
論文 参考訳(メタデータ) (2022-11-17T00:24:47Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Never mind the metrics -- what about the uncertainty? Visualising
confusion matrix metric distributions [6.566615606042994]
本稿では,不確実性の異なるモデル下での分布を明らかにすることにより,分類器の性能指標について,よりバランスのとれた視点を求める。
我々は、このROC空間内の(そしてそれ以上の)パフォーマンスメトリクスの輪郭の方程式、アニメーション、インタラクティブな可視化を開発します。
私たちの期待は、これらの洞察と視覚化によって、パフォーマンス指標の推定における実質的な不確実性に対する認識がより高くなることです。
論文 参考訳(メタデータ) (2022-06-05T11:54:59Z) - Masked prediction tasks: a parameter identifiability view [49.533046139235466]
マスク付きトークンの予測に広く用いられている自己教師型学習手法に着目する。
いくつかの予測タスクは識別可能性をもたらすが、他のタスクはそうではない。
論文 参考訳(メタデータ) (2022-02-18T17:09:32Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
もっとも単純な設定であっても、無知性仮定に基づく推定は誤解を招く可能性があることを示す。
異種処理効果評価のための機械学習ベンチマークデータセットを2つ検討した。
ベンチマークデータセットの固有の特性が、他のものよりもいくつかのアルゴリズムを好んでいる点を強調します。
論文 参考訳(メタデータ) (2021-07-28T13:21:27Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Estimating Treatment Effects with Observed Confounders and Mediators [25.338901482522648]
因果グラフが与えられた場合、do-calculusは経験的に推定できる観察関節分布の関数として治療効果を表現することができる。
時折、do-calculusは複数の有効な公式を識別し、対応する推定器の統計特性を比較するように促す。
本稿では,共同創設者と仲介者の両方が観察される過度に同定されたシナリオについて検討し,両推定手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-03-26T15:50:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。