論文の概要: A Novel Confidence Induced Class Activation Mapping for MRI Brain Tumor
Segmentation
- arxiv url: http://arxiv.org/abs/2306.05476v3
- Date: Mon, 30 Oct 2023 06:45:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 23:42:56.120216
- Title: A Novel Confidence Induced Class Activation Mapping for MRI Brain Tumor
Segmentation
- Title(参考訳): mri脳腫瘍セグメンテーションのための新しい信頼感誘発クラス活性化マッピング
- Authors: Yu-Jen Chen, Yiyu Shi, Tsung-Yi Ho
- Abstract要約: 弱教師付きセマンティックセグメンテーションのための信頼誘導CAM(Cfd-CAM)を提案する。
Cfd-CAMは、対象クラスの信頼度を用いて、各特徴マップの重みを算出する。
2つの脳腫瘍データセットに対する実験により、Cfd-CAMは既存の最先端の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 19.52081109414247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magnetic resonance imaging (MRI) is a commonly used technique for brain tumor
segmentation, which is critical for evaluating patients and planning treatment.
To make the labeling process less laborious and dependent on expertise,
weakly-supervised semantic segmentation (WSSS) methods using class activation
mapping (CAM) have been proposed. However, current CAM-based WSSS methods
generate the object localization map using internal neural network information,
such as gradient or trainable parameters, which can lead to suboptimal
solutions. To address these issues, we propose the confidence-induced CAM
(Cfd-CAM), which calculates the weight of each feature map by using the
confidence of the target class. Our experiments on two brain tumor datasets
show that Cfd-CAM outperforms existing state-of-the-art methods under the same
level of supervision. Overall, our proposed Cfd-CAM approach improves the
accuracy of brain tumor segmentation and may provide valuable insights for
developing better WSSS methods for other medical imaging tasks.
- Abstract(参考訳): 磁気共鳴イメージング(MRI)は、脳腫瘍のセグメンテーションにおいて一般的に用いられる技術であり、患者の評価や治療計画に重要である。
ラベル付けプロセスが専門知識に頼りにくくするために,クラスアクティベーションマッピング(CAM)を用いた弱教師付きセマンティックセマンティックセグメンテーション(WSSS)法が提案されている。
しかし、現在のCAMベースのWSSSメソッドは、勾配やトレーニング可能なパラメータなどの内部ニューラルネットワーク情報を使用してオブジェクトのローカライゼーションマップを生成し、それによってサブ最適解が得られる。
これらの問題に対処するために,各特徴マップの重み付けを目標クラスの信頼度を用いて算出する信頼誘導型CAM(Cfd-CAM)を提案する。
2つの脳腫瘍データセットに対する実験により、Cfd-CAMは、同じレベルの監督下で既存の最先端の手法よりも優れていることが示された。
総じて,提案するcfd-camアプローチは脳腫瘍の分画精度を向上し,他の医用画像診断のためのwsss法の開発に有用な知見を与える。
関連論文リスト
- Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
本研究は, 脊椎腫瘍の領域分割と局所化をAIアプローチで自動化することを目的とした, 新たなデータ拡張手法を提案する。
畳み込みニューラルネットワーク(CNN)アーキテクチャは、腫瘍の分類に用いられている。3次元の椎骨分割とラベル付け技術は、腰椎の腫瘍の正確な位置を特定するのに役立つ。
その結果, 腫瘍分節の99%の精度, 腫瘍分類の98%の精度, 腫瘍局在の99%の精度が得られた。
論文 参考訳(メタデータ) (2024-05-07T05:55:50Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - AME-CAM: Attentive Multiple-Exit CAM for Weakly Supervised Segmentation
on MRI Brain Tumor [20.70840352243769]
本稿では,複数の解像度からアクティベーションマップを抽出し,階層的に集約し,予測精度を向上させる新しいCAM手法であるAME-CAMを提案する。
提案手法をBraTS 2021データセット上で評価し,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-26T08:24:37Z) - Live image-based neurosurgical guidance and roadmap generation using
unsupervised embedding [53.992124594124896]
本稿では,注釈付き脳外科ビデオの大規模なデータセットを活用するライブ画像のみのガイダンスを提案する。
生成されたロードマップは、トレーニングセットの手術で取られた一般的な解剖学的パスをエンコードする。
166例の腹腔鏡下腺摘出術を施行し,本法の有効性について検討した。
論文 参考訳(メタデータ) (2023-03-31T12:52:24Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Category Guided Attention Network for Brain Tumor Segmentation in MRI [6.685945448824158]
カテゴリー案内注意U-Net(CGA U-Net)という新しいセグメンテーションネットワークを提案する。
本モデルでは,より正確かつ安定した特徴写像の長距離依存性を計算コストを伴わずに捉えることのできる,注目機構に基づくスーパービジョンアテンションモジュール(SAM)を設計する。
BraTS 2019データセットの実験的結果は、提案手法がセグメント化性能と計算複雑性の両方において最先端のアルゴリズムより優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T09:22:29Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Computational Intelligence Approach to Improve the Classification
Accuracy of Brain Neoplasm in MRI Data [8.980876474818153]
本報告では、MRIデータにおける脳新生検出の2つの改善について述べる。
MRIデータにおける関心領域を改善するための高度な前処理技術を提案する。
特徴抽出にCNN、分類にSVM(Support Vector Machine)を使用したハイブリッド技術も提案されている。
論文 参考訳(メタデータ) (2021-01-24T06:45:26Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
そこで我々は,腫瘍周辺で最小の境界ボックスを見つけるために,軽量計算量で高速かつ自動化された手法を提案する。
この領域は、サブリージョン腫瘍セグメンテーションのトレーニングネットワークにおける前処理ステップとして使用できる。
提案手法は BraTS 2015 データセット上で評価され,得られた平均 DICE スコアは 0.73 である。
論文 参考訳(メタデータ) (2020-02-26T14:10:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。