論文の概要: Maximally Machine-Learnable Portfolios
- arxiv url: http://arxiv.org/abs/2306.05568v2
- Date: Thu, 4 Apr 2024 23:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 20:49:52.222768
- Title: Maximally Machine-Learnable Portfolios
- Title(参考訳): 最大機械学習ポートフォリオ
- Authors: Philippe Goulet Coulombe, Maximilian Goebel,
- Abstract要約: 我々は,ポートフォリオの重み付けを最適化し,結果の合成セキュリティを最大限に予測できるように,協調的な機械学習アルゴリズムを開発した。
Lo と MacKinlay の元々の最大予測可能なポートフォリオアプローチには,2つの重要な改善点がある。
非常に少ない条件情報を用いた予測可能性および収益性の向上を報告した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When it comes to stock returns, any form of predictability can bolster risk-adjusted profitability. We develop a collaborative machine learning algorithm that optimizes portfolio weights so that the resulting synthetic security is maximally predictable. Precisely, we introduce MACE, a multivariate extension of Alternating Conditional Expectations that achieves the aforementioned goal by wielding a Random Forest on one side of the equation, and a constrained Ridge Regression on the other. There are two key improvements with respect to Lo and MacKinlay's original maximally predictable portfolio approach. First, it accommodates for any (nonlinear) forecasting algorithm and predictor set. Second, it handles large portfolios. We conduct exercises at the daily and monthly frequency and report significant increases in predictability and profitability using very little conditioning information. Interestingly, predictability is found in bad as well as good times, and MACE successfully navigates the debacle of 2022.
- Abstract(参考訳): 株価のリターンに関しては、どんな予測可能性でもリスク調整による収益性を高めることができる。
ポートフォリオの重み付けを最適化し、結果の合成セキュリティを最大限に予測できるように、協調的な機械学習アルゴリズムを開発する。
正確には、この方程式の一方にランダムフォレスト(ランダムフォレスト)を巻き込み、他方に制約のあるリッジ回帰(リッジ回帰)を巻き込み、上記の目標を達成するための交互条件予測の多変量拡張であるMACEを導入する。
Lo と MacKinlay の元々の最大予測可能なポートフォリオアプローチには,2つの重要な改善点がある。
まず、(非線形)予測アルゴリズムと予測器セットに対応している。
第二に、大きなポートフォリオを扱う。
日・月毎の頻度で運動を行い、非常に少ない条件情報を用いて予測可能性と収益性の顕著な増加を報告した。
興味深いことに、予測可能性も良いタイミングでも見つからず、MACEは2022年の崩壊をうまくナビゲートしている。
関連論文リスト
- Efficient pooling of predictions via kernel embeddings [0.24578723416255752]
確率的予測は、可能な結果の集合上の確率分布である。
それらは典型的には、個々の予測分布を線形にプールすることで結合される。
各予測に割り当てられた重量は、過去の性能に基づいて推定できる。
これは、いくつかのトレーニングデータに対して適切なスコアリングルールを最適化する重みを見つけることで達成できる。
論文 参考訳(メタデータ) (2024-11-25T10:04:37Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Empirical Asset Pricing via Ensemble Gaussian Process Regression [4.111899441919165]
我々のアンサンブル学習アプローチは、GPR推論に固有の計算複雑性を著しく減少させる。
本手法は,統計的,経済的に既存の機械学習モデルを支配している。
これは不確実な投資家にアピールし、S&P500を上回る等級と重み付けの予測対象ポートフォリオを圧倒的に上回っている。
論文 参考訳(メタデータ) (2022-12-02T09:37:29Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Dynamic Asset Allocation with Expected Shortfall via Quantum Annealing [0.0]
本稿では,動的アセット割り当て問題を解決するために,ハイブリッド量子古典アルゴリズムを提案する。
D-Waveの2000QとAdvantageの量子アニールの結果を実世界の財務データを用いて比較する。
高い相関関係を持つ資産の実験は、より優れた性能を発揮する傾向にあり、近い将来、実用的な量子アプリケーションを設計するのに役立つかもしれない。
論文 参考訳(メタデータ) (2021-12-06T17:39:43Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
本研究では,現実の大規模データセットにおける信頼性の予測問題について検討する。
我々は、先行技術損失関数で訓練された信頼性予測器が、正しい予測と誤った予測の両方を信頼に値するものとみなす傾向があることを観察する。
そこで我々は,2つのスライド状の曲線による不正確な予測から,特徴w.r.t.正しい予測を分離する,新たな急勾配損失を提案する。
論文 参考訳(メタデータ) (2021-09-30T19:19:09Z) - The Sharpe predictor for fairness in machine learning [0.0]
機械学習の応用においては、不公平な予測が少数派に対して差別されることがある。
フェア機械学習(FML)の既存のアプローチは、MLモデルの最適化において、フェアネスを制約またはペナル化用語として扱う。
本稿では,Multi-Objective Optimization(SMOO)に基づくFMLの新しいパラダイムを提案する。
FMLのシャープ予測器は、予測リスク(不公平)の単位当たりの最も高い予測リターン(精度)を提供する。
論文 参考訳(メタデータ) (2021-08-13T22:22:34Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - Malicious Experts versus the multiplicative weights algorithm in online
prediction [85.62472761361107]
2人の専門家と1人の予測者による予測問題を考える。
専門家の一人が正直で、各ラウンドで確率$mu$で正しい予測をしていると仮定する。
もう一つは悪意のあるもので、各ラウンドで真の結果を知り、予測者の損失を最大化するために予測を行う。
論文 参考訳(メタデータ) (2020-03-18T20:12:08Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。