論文の概要: HiTZ@Antidote: Argumentation-driven Explainable Artificial Intelligence
for Digital Medicine
- arxiv url: http://arxiv.org/abs/2306.06029v1
- Date: Fri, 9 Jun 2023 16:50:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-12 12:20:16.924849
- Title: HiTZ@Antidote: Argumentation-driven Explainable Artificial Intelligence
for Digital Medicine
- Title(参考訳): hitz@antidote: 議論駆動によるデジタル医療のための説明可能な人工知能
- Authors: Rodrigo Agerri, I\~nigo Alonso, Aitziber Atutxa, Ander Berrondo,
Ainara Estarrona, Iker Garcia-Ferrero, Iakes Goenaga, Koldo Gojenola, Maite
Oronoz, Igor Perez-Tejedor, German Rigau and Anar Yeginbergenova
- Abstract要約: AntiDOTEは、ディープラーニングプロセスの低レベル特性と人間の議論能力に適した高レベルスキームが組み合わされる、説明可能なAIという統合的なビジョンを育む。
プロジェクトの最初の成果として、Antidote CasiMedicosデータセットを公開し、一般に説明可能なAIの研究、特に医療分野における議論を促進する。
- 参考スコア(独自算出の注目度): 7.089952396422835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Providing high quality explanations for AI predictions based on machine
learning is a challenging and complex task. To work well it requires, among
other factors: selecting a proper level of generality/specificity of the
explanation; considering assumptions about the familiarity of the explanation
beneficiary with the AI task under consideration; referring to specific
elements that have contributed to the decision; making use of additional
knowledge (e.g. expert evidence) which might not be part of the prediction
process; and providing evidence supporting negative hypothesis. Finally, the
system needs to formulate the explanation in a clearly interpretable, and
possibly convincing, way. Given these considerations, ANTIDOTE fosters an
integrated vision of explainable AI, where low-level characteristics of the
deep learning process are combined with higher level schemes proper of the
human argumentation capacity. ANTIDOTE will exploit cross-disciplinary
competences in deep learning and argumentation to support a broader and
innovative view of explainable AI, where the need for high-quality explanations
for clinical cases deliberation is critical. As a first result of the project,
we publish the Antidote CasiMedicos dataset to facilitate research on
explainable AI in general, and argumentation in the medical domain in
particular.
- Abstract(参考訳): 機械学習に基づいたAI予測のための高品質な説明を提供することは、困難で複雑な作業である。
説明の適切な一般性と特異性のレベルを選択すること、考慮中のaiタスクと説明の受益者の親しみに関する仮定を検討すること、決定に寄与した特定の要素を参照すること、予測プロセスの一部ではないかもしれない追加の知識(例えば専門家の証拠)を使用すること、負の仮説を支持する証拠を提供すること。
最後に、システムは明確に解釈可能で、説得力のある方法で説明を定式化する必要がある。
これらの考察を踏まえ、AntiDOTEは、ディープラーニングプロセスの低レベル特性と人間の議論能力に適した高レベルスキームが組み合わされる、説明可能なAIという統合的なビジョンを育んでいる。
AntiDOTEは、深層学習と議論における学際的能力を活用して、説明可能なAIのより広範な革新的な視点をサポートする。
プロジェクトの最初の成果として、Antidote CasiMedicosデータセットを公開し、一般に説明可能なAIの研究、特に医療分野における議論を促進する。
関連論文リスト
- An Ontology-Enabled Approach For User-Centered and Knowledge-Enabled Explanations of AI Systems [0.3480973072524161]
説明可能性に関する最近の研究は、AIモデルやモデル説明可能性の動作を説明することに重点を置いている。
この論文は、モデルとユーザ中心の説明可能性の間のギャップを埋めようとしている。
論文 参考訳(メタデータ) (2024-10-23T02:03:49Z) - Do great minds think alike? Investigating Human-AI Complementarity in Question Answering with CAIMIRA [43.116608441891096]
人間は知識に基づく帰納的、概念的推論においてAIシステムより優れています。
GPT-4やLLaMAのような最先端のLLMは、ターゲット情報検索において優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-09T03:53:26Z) - Explainable AI: Definition and attributes of a good explanation for health AI [0.18846515534317265]
AIシステムが推奨する方法と理由を理解するには、内部の動作と推論プロセスに関する複雑な説明が必要になる可能性がある。
AIの可能性を完全に実現するためには、安全クリティカルなAIアプリケーションの説明に関する2つの基本的な疑問に対処することが重要である。
本研究の成果は,(1)健康AIにおける説明を構成するものの定義,(2)健康AIにおける良い説明を特徴付ける属性の包括的リストを含む。
論文 参考訳(メタデータ) (2024-09-09T16:56:31Z) - The Explanation Necessity for Healthcare AI [3.8953842074141387]
そこで本研究では,4つの異なる説明のクラスを持つ新たな分類体系を提案する。
評価プロトコルの堅牢性、専門家による観察の変動性、アプリケーションの表現次元性という3つの重要な要素が考慮されている。
論文 参考訳(メタデータ) (2024-05-31T22:20:10Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Machine Reasoning Explainability [100.78417922186048]
機械推論(MR: Machine Reasoning)は、抽象的推論を形式化し、エミュレートするための象徴的な手段である。
初期のMRの研究は、明らかに説明可能なAI(XAI)への問い合わせを開始した
本論文はMR説明可能性に関する我々の研究成果を報告する。
論文 参考訳(メタデータ) (2020-09-01T13:45:05Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - The role of explainability in creating trustworthy artificial
intelligence for health care: a comprehensive survey of the terminology,
design choices, and evaluation strategies [1.2762298148425795]
透明性の欠如は、医療におけるAIシステムの実装における主要な障壁の1つとして認識されている。
我々は最近の文献をレビューし、説明可能なAIシステムの設計について研究者や実践者にガイダンスを提供する。
我々は、説明可能なモデリングが信頼できるAIに貢献できると結論づけるが、説明可能性の利点は実際に証明する必要がある。
論文 参考訳(メタデータ) (2020-07-31T09:08:27Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。