論文の概要: Knowledge Enhanced Multi-Domain Recommendations in an AI Assistant Application
- arxiv url: http://arxiv.org/abs/2306.06302v2
- Date: Tue, 25 Mar 2025 00:54:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:50:33.546850
- Title: Knowledge Enhanced Multi-Domain Recommendations in an AI Assistant Application
- Title(参考訳): AIアシスタントアプリケーションにおける知識強化型マルチドメイン勧告
- Authors: Elan Markowitz, Ziyan Jiang, Fan Yang, Xing Fan, Tony Chen, Greg Ver Steeg, Aram Galstyan,
- Abstract要約: マルチドメインレコメンデーションは、以前のドメインでのユーザのインタラクションを活用して、新しいドメインでのレコメンデーションを改善する。
知識グラフの強化は、単一のドメイン内のレコメンデーションを改善するために、外部知識グラフを使用することを目指している。
我々は、数百万のユーザのクエリから得られたデータセットに対して、新しいモデルを開発し、これらのアプローチの付加的な利点を実証する。
- 参考スコア(独自算出の注目度): 39.86916449377249
- License:
- Abstract: This work explores unifying knowledge enhanced recommendation with multi-domain recommendation systems in a conversational AI assistant application. Multi-domain recommendation leverages users' interactions in previous domains to improve recommendations in a new one. Knowledge graph enhancement seeks to use external knowledge graphs to improve recommendations within a single domain. Both research threads incorporate related information to improve the recommendation task. We propose to unify these approaches: using information from interactions in other domains as well as external knowledge graphs to make predictions in a new domain that would not be possible with either information source alone. We develop a new model and demonstrate the additive benefit of these approaches on a dataset derived from millions of users' queries for content across three domains (videos, music, and books) in a live virtual assistant application. We demonstrate significant improvement on overall recommendations as well as on recommendations for new users of a domain.
- Abstract(参考訳): 本研究は,対話型AIアシスタントアプリケーションにおけるマルチドメインレコメンデーションシステムを用いた知識強化レコメンデーションの統合について検討する。
マルチドメインレコメンデーションは、以前のドメインでのユーザのインタラクションを活用して、新しいドメインでのレコメンデーションを改善する。
知識グラフの強化は、単一のドメイン内のレコメンデーションを改善するために、外部知識グラフを使用することを目指している。
どちらの研究スレッドも、リコメンデーションタスクを改善するために関連情報を組み込んでいる。
我々は、これらのアプローチを統合することを提案する: 外部の知識グラフと同様に、他のドメインの相互作用からの情報を用いて、情報ソースだけでは不可能な新しいドメインでの予測を行う。
仮想アシスタントアプリケーションにおける3つのドメイン(ビデオ,音楽,書籍)にわたるコンテンツに対する数百万のユーザのクエリから得られたデータセットに対して,新たなモデルを開発し,これらのアプローチの付加的メリットを実証する。
ドメインの新規ユーザに対するレコメンデーションだけでなく、全体的なレコメンデーションも大幅に改善する。
関連論文リスト
- DisCo: Graph-Based Disentangled Contrastive Learning for Cold-Start Cross-Domain Recommendation [11.61586672399166]
クロスドメインレコメンデーション(CDR)が有望なソリューションとして登場した。
しかし、ソースドメインに類似した好みを持つユーザは、ターゲットドメインに対して異なる関心を示す可能性がある。
そこで本稿では,ユーザ意図の微粒化を捉えるために,グラフに基づく非交叉型コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-19T16:20:42Z) - Exploiting Graph Structured Cross-Domain Representation for Multi-Domain
Recommendation [71.45854187886088]
マルチドメインレコメンデータシステムは、クロスドメイン表現学習とポジティブな知識伝達の恩恵を受ける。
我々はMAGRecと呼ばれる手法のコンテキスト情報として時間的ドメイン内相互作用とドメイン間相互作用を用いる。
我々は、MAGRecが最先端の手法を一貫して上回る様々なシナリオで、公開データセットで実験を行う。
論文 参考訳(メタデータ) (2023-02-12T19:51:32Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
メタラーニングをベースとした多元的ドメインを用いた多元的推論拡張フレームワークを提案する。
我々は、疎結合の場合の過度な適合を扱うために、新しい関心領域において多様な評価を生成する。
これらの評価は、選好メタラーナーを学ぶためのメタトレーニング手順に導入され、優れた一般化能力が得られる。
論文 参考訳(メタデータ) (2022-04-01T10:10:50Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
クロスドメインレコメンデーションのために2つの新しい結合型オートエンコーダに基づくディープラーニング手法を提案する。
最初の方法は、ソースドメインとターゲットドメイン内のアイテムの固有表現を明らかにするために、一対のオートエンコーダを同時に学習することを目的としている。
第2の方法は,2つのオートエンコーダを用いてユーザとアイテム待ち行列を深く非線形に生成する,新たな共同正規化最適化問題に基づいて導出する。
論文 参考訳(メタデータ) (2021-12-08T15:14:26Z) - RecGURU: Adversarial Learning of Generalized User Representations for
Cross-Domain Recommendation [19.61356871656398]
ドメイン間のレコメンデーションは、従来のシーケンシャルなレコメンデーションシステムにおけるデータスパリティの問題を軽減するのに役立つ。
本稿では,ドメイン間のユーザ情報を逐次レコメンデーションに組み込んだ汎用ユーザ表現(GUR)を生成するためのRecGURUアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-19T08:41:06Z) - Recommending Burgers based on Pizza Preferences: Addressing Data
Sparsity with a Product of Experts [4.945620732698048]
ユーザの嗜好に関する知識が限られているドメインにおいて,データスパーシティに対処し,レコメンデーションを作成する手法を記述する。
直感は、ソースドメインのユーザとアイテムのインタラクションが、ターゲットドメインのレコメンデーション品質を高めることができるということです。
AmazonとYelpの2つの広く使われているデータセットの結果は、総合的なユーザー好みの知識がより良いレコメンデーションをもたらすという主張をサポートする。
論文 参考訳(メタデータ) (2021-04-26T18:56:04Z) - Dual Metric Learning for Effective and Efficient Cross-Domain
Recommendations [85.6250759280292]
クロスドメインレコメンダーシステムは、消費者が異なるアプリケーションで有用なアイテムを識別するのを助けるためにますます価値があります。
既存のクロスドメインモデルは、通常、多くのオーバーラップユーザーを必要とするため、いくつかのアプリケーションでは取得が困難である。
本稿では,2つのドメイン間で情報を反復的に伝達する二元学習に基づく新しいクロスドメインレコメンデーションモデルを提案する。
論文 参考訳(メタデータ) (2021-04-17T09:18:59Z) - CATN: Cross-Domain Recommendation for Cold-Start Users via Aspect
Transfer Network [49.35977893592626]
コールドスタートユーザのためのアスペクト転送ネットワークによるクロスドメインレコメンデーションフレームワーク(CATN)を提案する。
CATNは、レビュー文書から各ユーザと各アイテムの複数のアスペクトを抽出し、注意機構を用いてドメイン間のアスペクト相関を学習する。
実世界のデータセットでは、提案したCATNは、評価予測精度の点でSOTAモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2020-05-21T10:05:19Z) - Dynamic Fusion Network for Multi-Domain End-to-end Task-Oriented Dialog [70.79442700890843]
本稿では,対象ドメインと各ドメインの関連性を自動的に活用する新しい動的核融合ネットワーク(DF-Net)を提案する。
トレーニングデータが少ないと、平均13.9%の事前最良モデルを上回り、転送可能性を示す。
論文 参考訳(メタデータ) (2020-04-23T08:17:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。