論文の概要: An Empirical Study of Bugs in Quantum Machine Learning Frameworks
- arxiv url: http://arxiv.org/abs/2306.06369v3
- Date: Thu, 22 Jun 2023 16:10:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 03:55:15.788732
- Title: An Empirical Study of Bugs in Quantum Machine Learning Frameworks
- Title(参考訳): 量子機械学習フレームワークにおけるバグの実証的研究
- Authors: Pengzhan Zhao, Xiongfei Wu, Junjie Luo, Zhuo Li, Jianjun Zhao
- Abstract要約: 人気の高い9つのQMLフレームワークの22のオープンソースリポジトリから収集された391の実際のバグを調査した。
バグの28%は、誤ったユニタリ行列の実装など、量子固有である。
われわれはQMLプラットフォームで5つの症状と9つの根本原因の分類を手作業で抽出した。
- 参考スコア(独自算出の注目度): 5.868747298750261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing has emerged as a promising domain for the machine learning
(ML) area, offering significant computational advantages over classical
counterparts. With the growing interest in quantum machine learning (QML),
ensuring the correctness and robustness of software platforms to develop such
QML programs is critical. A necessary step for ensuring the reliability of such
platforms is to understand the bugs they typically suffer from. To address this
need, this paper presents the first comprehensive study of bugs in QML
frameworks. We inspect 391 real-world bugs collected from 22 open-source
repositories of nine popular QML frameworks. We find that 1) 28% of the bugs
are quantum-specific, such as erroneous unitary matrix implementation, calling
for dedicated approaches to find and prevent them; 2) We manually distilled a
taxonomy of five symptoms and nine root cause of bugs in QML platforms; 3) We
summarized four critical challenges for QML framework developers. The study
results provide researchers with insights into how to ensure QML framework
quality and present several actionable suggestions for QML framework developers
to improve their code quality.
- Abstract(参考訳): 量子コンピューティングは機械学習(ML)分野の有望な領域として登場し、古典的な分野よりも大きな計算上の優位性を提供している。
量子機械学習(QML)への関心が高まっているため、このようなQMLプログラムを開発するためのソフトウェアプラットフォームの正確性と堅牢性を保証することが重要である。
このようなプラットフォームの信頼性を確保するための必要なステップは、彼らが通常抱えるバグを理解することです。
このニーズに対処するため,本論文はqmlフレームワークにおけるバグに関する最初の包括的な研究を行う。
9つの人気のあるQMLフレームワークの22のオープンソースリポジトリから収集された391の実際のバグを調査した。
私たちはそれを見つけ
1) バグの28%は,不正なユニタリ行列の実装,検出と防止のための専用アプローチの要求など,量子固有である。
2)QMLプラットフォームにおける5つの症状と9つの根本原因の分類を手作業で抽出した。
3) QMLフレームワーク開発者には,4つの重要な課題を要約した。
その結果、研究者はQMLフレームワークの品質を保証するための洞察を与え、QMLフレームワーク開発者がコード品質を改善するための実用的な提案をいくつか提示した。
関連論文リスト
- What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Predominant Aspects on Security for Quantum Machine Learning: Literature Review [0.0]
量子機械学習(Quantum Machine Learning, QML)は、量子コンピューティングと古典的な機械学習の有望な交わりとして登場した。
本稿では,セキュリティ上の懸念と強みがQMLとどのように結びついているのかを,系統的な文献レビューを用いて論じる。
論文 参考訳(メタデータ) (2024-01-15T15:35:43Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench - LLM(Large Language Models)のベンチマーク。
C++、Java、Pythonの4つの主要なバグカテゴリと18のマイナータイプをカバーする。
ゼロショットシナリオで2つの商用および4つのオープンソースモデルを評価する。
論文 参考訳(メタデータ) (2024-01-09T15:46:38Z) - Competition-Level Problems are Effective LLM Evaluators [121.15880285283116]
本稿では,Codeforcesにおける最近のプログラミング問題の解決において,大規模言語モデル(LLM)の推論能力を評価することを目的とする。
まず,問題の発生時間,難易度,遭遇したエラーの種類など,様々な側面を考慮して,GPT-4の望ましくないゼロショット性能を総合的に評価する。
驚くべきことに、GPT-4のTheThoughtivedのパフォーマンスは、2021年9月以降、あらゆる困難と種類の問題に対して一貫して問題が減少するような崖を経験している。
論文 参考訳(メタデータ) (2023-12-04T18:58:57Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
我々はカーンズのSQオラクルとヴァリアントの弱い評価オラクルからインスピレーションを得ます。
評価クエリから学習するための非条件の下限を出力する,広範かつ直感的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-26T18:23:21Z) - A Survey on Quantum Machine Learning: Current Trends, Challenges, Opportunities, and the Road Ahead [5.629434388963902]
量子コンピューティング(QC)は、古典的な計算に比べて複雑な問題を解く効率を改善すると主張している。
QCが機械学習(ML)に統合されると、量子機械学習(QML)システムを生成する。
本稿では,QCの基本概念と,その古典コンピューティングに対する顕著な優位性について,より深く理解することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T11:52:54Z) - Q-Bench: A Benchmark for General-Purpose Foundation Models on Low-level
Vision [85.6008224440157]
MLLM(Multi-modality Large Language Models)は、コンピュータビジョンの特殊モデルから汎用基礎モデルへのシフトを触媒している。
Q-Benchは3つの領域(低レベル視覚知覚、低レベル視覚記述、全体視品質評価)でMLLMの潜在能力を評価するための総合的なベンチマークである。
論文 参考訳(メタデータ) (2023-09-25T14:43:43Z) - Case Study-Based Approach of Quantum Machine Learning in Cybersecurity:
Quantum Support Vector Machine for Malware Classification and Protection [8.34729912896717]
各種サイバーセキュリティトピックをカバーするQMLベースの学習モジュールを設計・開発する。
本稿では,マルウェアの分類と保護に量子支援ベクトルマシン(QSVM)を用いる。
我々はQSVMモデルを実証し、マルウェアの分類と保護において95%の精度を達成する。
論文 参考訳(メタデータ) (2023-06-01T02:04:09Z) - Projection Valued Measure-based Quantum Machine Learning for Multi-Class
Classification [10.90994913062223]
プロジェクション評価尺度(PVM)を用いた多クラス分類のための新しいフレームワークを提案する。
我々のフレームワークは6キュービット未満のデータセットで最先端のSOTA(State-of-theart)より優れています。
論文 参考訳(メタデータ) (2022-10-30T03:12:53Z) - Bugs in Machine Learning-based Systems: A Faultload Benchmark [16.956588187947993]
パフォーマンスを評価し、比較し、利点と弱点について議論する標準のバグベンチマークはありません。
本研究では,MLベースのシステムにおけるバグの妥当性をまず検証し,各システムにおいて最も重要な要因を示す。
標準ベンチマークのすべての基準、すなわち妥当性、公正性、妥当性、ユーザビリティを満足するベンチマークであるdele4MLを提供する。
論文 参考訳(メタデータ) (2022-06-24T14:20:34Z) - Understanding the Usability Challenges of Machine Learning In
High-Stakes Decision Making [67.72855777115772]
機械学習(ML)は、多種多様な成長を続ける一連のドメインに適用されている。
多くの場合、MLやデータサイエンスの専門知識を持たないドメインの専門家は、ML予測を使用してハイステークな意思決定を行うように求められます。
児童福祉スクリーニングにおけるMLユーザビリティの課題について,児童福祉スクリーニング者との一連のコラボレーションを通じて検討する。
論文 参考訳(メタデータ) (2021-03-02T22:50:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。