論文の概要: Improving the Validity of Decision Trees as Explanations
- arxiv url: http://arxiv.org/abs/2306.06777v4
- Date: Fri, 1 Sep 2023 19:45:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 04:45:28.231919
- Title: Improving the Validity of Decision Trees as Explanations
- Title(参考訳): 説明としての決定木の有効性の向上
- Authors: Jiri Nemecek and Tomas Pevny and Jakub Marecek
- Abstract要約: 精度が不均衡な決定木は誤解を招く説明を与えることができる。
葉ノード間の最大誤分類誤差を最小限に抑えるために,浅い木を訓練する。
葉が伸びた浅葉樹の全体的な統計性能は、古典的手法を用いて訓練された無限深度の決定木により改善される。
- 参考スコア(独自算出の注目度): 2.7624021966289596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In classification and forecasting with tabular data, one often utilizes
tree-based models. Those can be competitive with deep neural networks on
tabular data [cf. Grinsztajn et al., NeurIPS 2022, arXiv:2207.08815] and, under
some conditions, explainable. The explainability depends on the depth of the
tree and the accuracy in each leaf of the tree. Decision trees containing
leaves with unbalanced accuracy can provide misleading explanations.
Low-accuracy leaves give less valid explanations, which could be interpreted as
unfairness among explanations. Here, we train a shallow tree with the objective
of minimizing the maximum misclassification error across each leaf node. Then,
we extend each leaf with a separate tree-based model. The shallow tree provides
a global explanation, while the overall statistical performance of the shallow
tree with extended leaves improves upon decision trees of unlimited depth
trained using classical methods (e.g., CART) and is comparable to
state-of-the-art methods (e.g., well-tuned XGBoost).
- Abstract(参考訳): 表データによる分類と予測では、しばしば木に基づくモデルを用いる。
これらは、グラフデータ(cf. Grinsztajn et al., NeurIPS 2022, arXiv:2207.08815]上のディープニューラルネットワークと競合し、いくつかの条件下では説明可能である。
説明性は木の深さと木の葉の精度に依存する。
不均衡な精度の葉を含む決定木は、誤解を招く説明を与えることができる。
低精度の葉は妥当な説明をしておらず、説明の間で不公平と解釈できる。
ここでは,葉ノード毎の最大誤分類誤差を最小化するために,浅い木を訓練する。
次に、各葉を別の木ベースモデルで拡張する。
浅い木はグローバルな説明を提供する一方、葉が伸びた浅い木の全体的な統計性能は、古典的な方法(例えばCART)で訓練された無限の深さの決定木で改善され、最先端の手法(例えば、よく訓練されたXGBoost)に匹敵する。
関連論文リスト
- Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations [5.65604054654671]
混合モデルに対する説明可能性-雑音比の概念を導入する。
本研究では,混合モデルを入力として,データに依存しない時間に適切な木を構築するアルゴリズムを提案する。
結果の決定ツリーの誤り率について,上と下の境界を証明した。
論文 参考訳(メタデータ) (2024-11-03T14:00:20Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
メタ学習によってトレーニングされたトランスフォーマーベースのモデルであるMetaTreeを導入し、強力な決定木を直接生成する。
我々は、多くのデータセットに欲求決定木とグローバルに最適化された決定木の両方を適合させ、MetaTreeを訓練して、強力な一般化性能を実現する木のみを生成する。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
統計学で広く普及している偏りと分散還元に対する現在の高次二分法は、木のアンサンブルを理解するには不十分である、と我々は主張する。
森林は、通常暗黙的に絡み合っている3つの異なるメカニズムによって、樹木を改良できることを示す。
論文 参考訳(メタデータ) (2024-02-02T15:36:43Z) - Probabilistic Tree-of-thought Reasoning for Answering
Knowledge-intensive Complex Questions [93.40614719648386]
大規模言語モデル(LLM)は、知識集約的な複雑な質問にチェーン・オブ・シント(CoT)推論で答えることができる。
最近の研究は、CoT推論を強化するための外部知識の回収に向けられている。
確率的ツリー・オブ・シント推論(ProbTree)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-23T12:52:37Z) - Conceptual Views on Tree Ensemble Classifiers [0.0]
ランダムフォレストと関連するツリーベースの手法は、テーブルベースのデータから教師付き学習に人気がある。
並列化の容易さとは別に 分類性能も優れています
この不利を補うために統計手法が用いられることが多いが、局所的な説明、特にグローバルな説明の能力は限られている。
論文 参考訳(メタデータ) (2023-02-10T14:33:21Z) - Computing Abductive Explanations for Boosted Trees [22.349433202401354]
本稿では,高木に対する木固有の説明法について紹介する。
木固有の説明は時間で計算できる帰納的説明であることを示す。
また、木固有の説明から、サブセット最小誘引的説明を導出する方法についても説明する。
論文 参考訳(メタデータ) (2022-09-16T06:53:42Z) - Active-LATHE: An Active Learning Algorithm for Boosting the Error
Exponent for Learning Homogeneous Ising Trees [75.93186954061943]
我々は、$rho$が少なくとも0.8$である場合に、エラー指数を少なくとも40%向上させるアルゴリズムを設計し、分析する。
我々の分析は、グラフの一部により多くのデータを割り当てるために、微小だが検出可能なサンプルの統計的変動を巧みに活用することに基づいている。
論文 参考訳(メタデータ) (2021-10-27T10:45:21Z) - Tree in Tree: from Decision Trees to Decision Graphs [2.2336243882030025]
Tree in Tree decision graph (TnT)は、従来の決定木をより汎用的で強力な非巡回グラフに拡張するフレームワークである。
提案するモデルは,広く用いられている決定木に代わる,新しい,より効率的かつ正確な代替手段である。
論文 参考訳(メタデータ) (2021-10-01T13:20:05Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
本研究では,高次元scRNA-seqデータから意味のある木構造を同定する手法を提案する。
次に、低次元空間におけるデータのツリー構造を強調する木バイアスオートエンコーダDTAEを紹介する。
論文 参考訳(メタデータ) (2021-02-11T08:48:48Z) - Robust estimation of tree structured models [0.0]
ノイズの多い二分データから、可能な木の小さな等価クラスまで、木を復元できることが示される。
また、Chow-Liuアルゴリズムがノイズデータから根本木を継続的に学習する際の特徴付けも提供する。
論文 参考訳(メタデータ) (2021-02-10T14:58:40Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。