論文の概要: Pipeline quantum processor architecture for silicon spin qubits
- arxiv url: http://arxiv.org/abs/2306.07673v1
- Date: Tue, 13 Jun 2023 10:35:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 14:11:19.838358
- Title: Pipeline quantum processor architecture for silicon spin qubits
- Title(参考訳): シリコンスピン量子ビットのためのパイプライン量子プロセッサアーキテクチャ
- Authors: S. M. Patom\"aki, M. F. Gonzalez-Zalba, M. A. Fogarty, Z. Cai, S. C.
Benjamin, J. J. L. Morton
- Abstract要約: ノイズの多い中間スケール量子(NISQ)デバイスは、古典的なシステムに対して量子優位性を実現する。
我々は,すべての実行時制御をグローバルに適用する「キュービットパイプライン」を用いたNISQプロセッサアーキテクチャを提案する。
これは、階層化された物理構造の配列を通して量子状態の進行によって達成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Noisy intermediate-scale quantum (NISQ) devices seek to achieve quantum
advantage over classical systems without the use of full quantum error
correction. We propose a NISQ processor architecture using a qubit `pipeline'
in which all run-time control is applied globally, reducing the required number
and complexity of control and interconnect resources. This is achieved by
progressing qubit states through a layered physical array of structures which
realise single and two-qubit gates. Such an approach lends itself to NISQ
applications such as variational quantum eigensolvers which require numerous
repetitions of the same calculation, or small variations thereof. In exchange
for simplifying run-time control, a larger number of physical structures is
required for shuttling the qubits as the circuit depth now corresponds to an
array of physical structures. However, qubit states can be `pipelined' densely
through the arrays for repeated runs to make more efficient use of physical
resources. We describe how the qubit pipeline can be implemented in a silicon
spin-qubit platform, to which it is well suited to due to the high qubit
density and scalability. In this implementation, we describe the physical
realisation of single and two qubit gates which represent a universal gate set
that can achieve fidelities of $\mathcal{F} \geq 0.9999$, even under typical
qubit frequency variations.
- Abstract(参考訳): ノイズの多い中間スケール量子(NISQ)デバイスは、完全な量子誤差補正を使わずに古典的なシステムに対して量子優位性を実現する。
我々は,すべてのランタイム制御をグローバルに適用するqubit 'pipeline' を用いた NISQ プロセッサアーキテクチャを提案する。
これは、単一および2量子ゲートを実現する物理構造の層状配列を通して量子状態の進行によって達成される。
このようなアプローチは、同じ計算の多くの繰り返しを必要とする変分量子固有解法や、その小さな変分など、NISQの応用に自らをあてはめる。
実行時制御の簡略化と引き換えに、回路深さが現在の物理構造の配列に対応するため、キュービットを閉鎖するためには、より多くの物理構造が必要である。
しかし、クビット状態は繰り返し実行するために配列を通して「ピペリン化」され、物理リソースをより効率的に利用することができる。
本稿では,量子ビットパイプラインをシリコンスピン量子ビットプラットフォームに実装する方法について述べる。
この実装では、典型的なキュービット周波数変動の下でも、$\mathcal{F} \geq 0.9999$の忠実度を達成できる普遍ゲート集合を表す単一および2つのキュービットゲートの物理的実現を記述する。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Towards early fault tolerance on a 2$\times$N array of qubits equipped with shuttling [0.0]
局所的に相互作用する量子ビットの2次元グリッドは、フォールトトレラント量子コンピューティングのための有望なプラットフォームである。
本稿では,そのような制約のあるアーキテクチャも耐障害性をサポートすることを示す。
エラー訂正が可能であることを実証し、このプラットフォームに自然に適合するコードのクラスを特定する。
論文 参考訳(メタデータ) (2024-02-19T23:31:55Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
動的にフィールドプログラマブルな量子ビットアレイ(DPQA)が量子情報処理のための有望なプラットフォームとして登場した。
本稿では,複数の配列を含むDPQAアーキテクチャについて考察する。
DPQAをベースとしたコンパイル回路では,グリッド固定アーキテクチャに比べてスケーリングオーバヘッドが小さくなることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:13:10Z) - A Classical Architecture For Digital Quantum Computers [21.99729700579818]
ボトルネックのスケーリング デジタル量子コンピュータの作成は、量子計算と古典的コンポーネントの両方の課題を引き起こす。
我々は,古典的なアーキテクチャを提示し,後者の課題の包括的リストに一度に対処し,それをエンドツーエンドシステムで完全に実装する。
我々のアーキテクチャは、大規模量子プロセッサのスケーラブルで高精度な制御を可能にし、量子ハードウェアの進化する要求に対応する。
論文 参考訳(メタデータ) (2023-05-23T17:44:06Z) - Mapping quantum circuits to modular architectures with QUBO [3.0148208709026005]
マルチコアアーキテクチャでは、アルゴリズムの実行時にコア間の通信量を最小化することが重要である。
問題と解をエンコードする擬似非制約バイナリ最適化手法を初めて提案する。
提案手法は有望な結果を示し,非常に高密度かつ並列化された回路で極めて良好に動作した。
論文 参考訳(メタデータ) (2023-05-11T09:45:47Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
我々は、様々な量子プロセッサの動作を数値的にシミュレートし、特徴付ける。
我々は,各デバイスの性能をベンチマークラインと比較することにより,量子複雑性を同定し,評価する。
我々は、回路の出力状態が平均して高い純度である限り、偏化ベースのベンチマークが成り立つことを発見した。
論文 参考訳(メタデータ) (2023-04-10T23:01:10Z) - Graph test of controllability in qubit arrays: A systematic way to
determine the minimum number of external controls [62.997667081978825]
我々は、ハミルトニアンのグラフ表現に基づいて、結合された量子ビットの配列の可制御性を決定する方法を示す。
複雑な量子ビット結合では、制御数を5から1に減らすことができる。
論文 参考訳(メタデータ) (2022-12-09T12:59:44Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
量子ノードのランダムネットワークが量子コンピューティングの堅牢なハードウェアとしてどのように使用できるかを示す。
我々のネットワークアーキテクチャは、量子ノードの単一層のみを最適化することで量子演算を誘導する。
数量子状態においては、量子回路内の複数の量子ゲートのシーケンスは単一の演算で圧縮することができる。
論文 参考訳(メタデータ) (2020-03-21T03:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。