All pure bipartite entangled states can be semi-self-tested with only
one measurement setting on each party
- URL: http://arxiv.org/abs/2306.07755v1
- Date: Tue, 13 Jun 2023 13:12:07 GMT
- Title: All pure bipartite entangled states can be semi-self-tested with only
one measurement setting on each party
- Authors: Lijinzhi Lin and Zhenyu Chen and Xiaodie Lin and Zhaohui Wei
- Abstract summary: We prove that an arbitrary $dtimes d$ bipartite pure state can be certified completely (up to local unitary transformations) by a certain correlation generated by a single measurement setting on each party.
Notably, our protocols do not involve any quantum nonlocality.
- Score: 1.6629141734354616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It has been known that all bipartite pure quantum states can be self-tested,
i.e., any such state can be certified completely by initially measuring both
subsystems of this state by proper local quantum measurements and subsequently
verifying that the correlation between the measurement choices and the outcomes
satisfies a specific condition. In such a protocol, a key feature is that the
conclusion can still be reliable even if involved quantum measurements are
untrusted, where quantum nonlocality is crucial and plays a central role, and
this means that each party has to conduct at least two different quantum
measurements to produce a desirable correlation. Here, we prove that when the
underlying Hilbert space dimension is known beforehand, an arbitrary $d\times
d$ bipartite pure state can be certified completely (up to local unitary
transformations) by a certain correlation generated by a single measurement
setting on each party, where each measurement yields only $3d$ outcomes.
Notably, our protocols do not involve any quantum nonlocality. We believe that
our result may provide us a remarkable convenience when certifying bipartite
pure quantum states in quantum labs.
Related papers
- Almost device-independent certification of GME states with minimal
measurements [41.94295877935867]
Device-independent certification of quantum states allows the characterization of quantum states present inside a device.
A major problem in this regard is to certify quantum states using minimal resources.
We consider the multipartite quantum steering scenario with an arbitrary number of parties but only one of which is trusted in the sense that the measurements performed by the trusted party are known.
arXiv Detail & Related papers (2024-02-28T17:54:55Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Discriminating mixed qubit states with collective measurements [0.2621730497733947]
We propose and experimentally demonstrate a protocol for distinguishing two copies of single qubit states using collective measurements.
We implement our measurements on an IBM Q System One device, a superconducting quantum processor.
arXiv Detail & Related papers (2023-02-17T14:02:26Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Entanglement detection in quantum many-body systems using entropic
uncertainty relations [0.0]
We study experimentally accessible lower bounds on entanglement measures based on entropic uncertainty relations.
We derive an improved entanglement bound for bipartite systems, which requires measuring joint probability distributions in only two different measurement settings per subsystem.
arXiv Detail & Related papers (2021-01-21T20:50:11Z) - On the optimal certification of von Neumann measurements [55.41644538483948]
certification of quantum measurements can be viewed as the extension of quantum hypotheses testing.
We show the connection between the certification of quantum channels or von Neumann measurements and the notion of $q$-numerical range.
arXiv Detail & Related papers (2020-09-14T22:38:23Z) - Robust self-testing of steerable quantum assemblages and its
applications on device-independent quantum certification [0.0]
Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing.
We propose a framework called "robust self-testing of steerable quantum assemblages"
Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved.
arXiv Detail & Related papers (2020-02-07T14:50:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.