Electron Localization in Rydberg States
- URL: http://arxiv.org/abs/2306.07950v1
- Date: Tue, 13 Jun 2023 17:45:28 GMT
- Title: Electron Localization in Rydberg States
- Authors: Jan Mostowski and Joanna Pietraszewicz
- Abstract summary: We discuss the possibility of localizing an electron in a highly excited Rydberg state.
The second-order correlation of emitted photons is the tool for the determination of electron position.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We discuss the possibility of localizing an electron in a highly excited
Rydberg state. The second-order correlation of emitted photons is the tool for
the determination of electron position. This second-order correlation of
emitted radiation and, therefore, the correlation of operators describing the
acceleration of the electron allows for a partial localization of the electron
in its orbit. The correlation function is found by approximating the transition
matrix elements by their values in the classical limit. It is shown that the
second-order correlation, depending on two times, is a function of the time
difference and is a periodic function of this argument with the period equal to
the period of the corresponding classical motion. The function has sharp maxima
corresponding to large electron acceleration in the vicinity of the
``perihelion.'' This allows the localization of the electron in its consecutive
approach to the perihelion point.
Related papers
- Correlated electron dynamics with time-dependent quantum Monte Carlo: three-dimensional helium [0.0]
The recently proposed quantum Monte Carlo method is applied to three dimensional para- and ortho-helium atoms subjected to an external electromagnetic field with amplitude sufficient to cause significant ionization.
By solving concurrently sets of up to 20 000 coupled 3D time-dependent Schroedinger equations for the guide waves and corresponding sets of first order equations of motion for the Monte Carlo walkers we obtain ground state energies in close agreement with the exact values.
arXiv Detail & Related papers (2025-01-28T07:58:13Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Excitation spectra of two correlated electrons in a quantum dot [0.0]
Experimentally, excited states are found beyond the well-known lowest singlet- and triplet states.
These states can be reproduced in an exact diagonalization calculation of a parabolic dot with moderate in-plane anisotropy.
arXiv Detail & Related papers (2021-12-28T18:20:29Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Three-electron correlations in strong laser field ionization: Spin
induced effects [0.0]
We study model atoms with three active electrons interacting with strong pulsed radiation, using an ab-initio time-dependent Schr"odinger equation on a grid.
We show that significant differences are obtained between model Neon and Nitrogen atoms.
These differences are traced back to the different symmetries of the electronic wavefunctions, and directly related to the different initial state spin components.
arXiv Detail & Related papers (2021-04-29T15:57:00Z) - Photoionization of aligned excited states in neon by attosecond laser
pulses [0.0]
We numerically describe the ionization process induced by linearly and circularly polarized XUV attosecond laser pulses on an aligned target.
We find that correlation-assisted ionization channels can dominate over channels without correlation.
arXiv Detail & Related papers (2020-11-11T09:36:09Z) - Relativistic electron spin dynamics in a strong unipolar laser field [0.0]
We show proportionality between the change of the electron spin projections and the electric field area of the pulse.
It is shown that the classical relativistic predictions are accurately reproduced when using the Foldy-Wouthuysen operator.
arXiv Detail & Related papers (2020-05-06T14:10:09Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.