Privacy Inference-Empowered Stealthy Backdoor Attack on Federated
Learning under Non-IID Scenarios
- URL: http://arxiv.org/abs/2306.08011v1
- Date: Tue, 13 Jun 2023 11:08:30 GMT
- Title: Privacy Inference-Empowered Stealthy Backdoor Attack on Federated
Learning under Non-IID Scenarios
- Authors: Haochen Mei, Gaolei Li, Jun Wu, Longfei Zheng
- Abstract summary: Federated learning (FL) naturally faces the problem of data heterogeneity in real-world scenarios.
In this paper, we propose a privacy inference-empowered stealthy backdoor attack scheme for FL under non-IID scenarios.
Experiments based on MNIST, CIFAR10 and Youtube Aligned Face datasets demonstrate that the proposed PI-SBA scheme is effective in non-IID FL and stealthy against state-of-the-art defense methods.
- Score: 7.161511745025332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) naturally faces the problem of data heterogeneity in
real-world scenarios, but this is often overlooked by studies on FL security
and privacy. On the one hand, the effectiveness of backdoor attacks on FL may
drop significantly under non-IID scenarios. On the other hand, malicious
clients may steal private data through privacy inference attacks. Therefore, it
is necessary to have a comprehensive perspective of data heterogeneity,
backdoor, and privacy inference. In this paper, we propose a novel privacy
inference-empowered stealthy backdoor attack (PI-SBA) scheme for FL under
non-IID scenarios. Firstly, a diverse data reconstruction mechanism based on
generative adversarial networks (GANs) is proposed to produce a supplementary
dataset, which can improve the attacker's local data distribution and support
more sophisticated strategies for backdoor attacks. Based on this, we design a
source-specified backdoor learning (SSBL) strategy as a demonstration, allowing
the adversary to arbitrarily specify which classes are susceptible to the
backdoor trigger. Since the PI-SBA has an independent poisoned data synthesis
process, it can be integrated into existing backdoor attacks to improve their
effectiveness and stealthiness in non-IID scenarios. Extensive experiments
based on MNIST, CIFAR10 and Youtube Aligned Face datasets demonstrate that the
proposed PI-SBA scheme is effective in non-IID FL and stealthy against
state-of-the-art defense methods.
Related papers
- Privacy Attack in Federated Learning is Not Easy: An Experimental Study [5.065947993017158]
Federated learning (FL) is an emerging distributed machine learning paradigm proposed for privacy preservation.
Recent studies have indicated that FL cannot entirely guarantee privacy protection.
It remains uncertain whether privacy attack FL algorithms are effective in realistic federated environments.
arXiv Detail & Related papers (2024-09-28T10:06:34Z) - Concealing Backdoor Model Updates in Federated Learning by Trigger-Optimized Data Poisoning [20.69655306650485]
Federated Learning (FL) is a decentralized machine learning method that enables participants to collaboratively train a model without sharing their private data.
Despite its privacy and scalability benefits, FL is susceptible to backdoor attacks.
We propose DPOT, a backdoor attack strategy in FL that dynamically constructs backdoor objectives by optimizing a backdoor trigger.
arXiv Detail & Related papers (2024-05-10T02:44:25Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Backdoor Attacks and Defenses in Federated Learning: Survey, Challenges
and Future Research Directions [3.6086478979425998]
Federated learning (FL) is a machine learning (ML) approach that allows the use of distributed data without compromising personal privacy.
The heterogeneous distribution of data among clients in FL can make it difficult for the orchestration server to validate the integrity of local model updates.
Backdoor attacks involve the insertion of malicious functionality into a targeted model through poisoned updates from malicious clients.
arXiv Detail & Related papers (2023-03-03T20:54:28Z) - Backdoor Attacks in Peer-to-Peer Federated Learning [11.235386862864397]
Peer-to-Peer Federated Learning (P2PFL) offer advantages in terms of both privacy and reliability.
We propose new backdoor attacks for P2PFL that leverage structural graph properties to select the malicious nodes, and achieve high attack success.
arXiv Detail & Related papers (2023-01-23T21:49:28Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Federated Deep Learning with Bayesian Privacy [28.99404058773532]
Federated learning (FL) aims to protect data privacy by cooperatively learning a model without sharing private data among users.
Homomorphic encryption (HE) based methods provide secure privacy protections but suffer from extremely high computational and communication overheads.
Deep learning with Differential Privacy (DP) was implemented as a practical learning algorithm at a manageable cost in complexity.
arXiv Detail & Related papers (2021-09-27T12:48:40Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
Data heterogeneity has been identified as one of the key features in federated learning but often overlooked in the lens of robustness to adversarial attacks.
This paper focuses on characterizing and understanding its impact on backdooring attacks in federated learning through comprehensive experiments using synthetic and the LEAF benchmarks.
arXiv Detail & Related papers (2021-02-01T06:06:21Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
We conduct the first comprehensive survey on this topic.
Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic.
arXiv Detail & Related papers (2020-12-07T12:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.