論文の概要: WavPool: A New Block for Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2306.08734v1
- Date: Wed, 14 Jun 2023 20:35:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 17:20:03.563451
- Title: WavPool: A New Block for Deep Neural Networks
- Title(参考訳): wavpool:ディープニューラルネットワークのための新しいブロック
- Authors: Samuel D. McDermott, M. Voetberg, Brian Nord
- Abstract要約: マルチレゾリューション・パーセプトロンと呼ばれる新しいウェーブレット変換型ネットワークアーキテクチャを導入する。
プーリング層を追加することで、新しいネットワークブロック、WavPoolを作成します。
WavPoolはパラメータを減らしながら同様の多層パーセプトロンを上回り、CIFAR-10の相対的精度で同等の畳み込みニューラルネットワークを10%上回る。
- 参考スコア(独自算出の注目度): 2.2311710049695446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern deep neural networks comprise many operational layers, such as dense
or convolutional layers, which are often collected into blocks. In this work,
we introduce a new, wavelet-transform-based network architecture that we call
the multi-resolution perceptron: by adding a pooling layer, we create a new
network block, the WavPool. The first step of the multi-resolution perceptron
is transforming the data into its multi-resolution decomposition form by
convolving the input data with filters of fixed coefficients but increasing
size. Following image processing techniques, we are able to make scale and
spatial information simultaneously accessible to the network without increasing
the size of the data vector. WavPool outperforms a similar multilayer
perceptron while using fewer parameters, and outperforms a comparable
convolutional neural network by ~ 10% on relative accuracy on CIFAR-10.
- Abstract(参考訳): 現代のディープニューラルネットワークは、密集層や畳み込み層など、多くの操作層で構成されており、しばしばブロックにまとめられる。
本研究では,マルチレゾリューション・パーセプトロンと呼ばれる新しいウェーブレット・トランスフォーメーション・ベースのネットワークアーキテクチャを導入する。
マルチレゾリューションパーセプトロンの第1ステップは、入力データを固定係数のフィルタで変換するが、サイズが大きくなることで、データをそのマルチレゾリューション分解形式に変換する。
画像処理技術により,データベクトルのサイズを増大させることなく,スケール情報と空間情報を同時にネットワークにアクセスすることができる。
WavPoolはパラメータを減らしながら同様の多層パーセプトロンを上回り、CIFAR-10の相対精度で同等の畳み込みニューラルネットワークを約10%上回る。
関連論文リスト
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
深部画像登録は異常な精度と高速な推測を示した。
近年の進歩は、粗大から粗大の方法で密度変形場を推定するために、複数のカスケードまたはピラミッドアーキテクチャを採用している。
本稿では,様々なスケールにわたる変位/速度場に対して,スケールワイブレット係数を漸進的に推定するモデル駆動WiNetを提案する。
論文 参考訳(メタデータ) (2024-07-18T11:51:01Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Mixed-TD: Efficient Neural Network Accelerator with Layer-Specific
Tensor Decomposition [7.221206118679026]
そこで我々は,Mixed-TDと呼ばれるテンソル分解法に基づいて,CNNをFPGAにマッピングするフレームワークを提案する。
提案手法は,DSP毎の1.73倍から10.29倍のスループットを最先端CNNに適用し,層固有特異値分解(SVD)とカノニカルポリアディック分解(CPD)を混合的に適用する。
論文 参考訳(メタデータ) (2023-06-08T08:16:38Z) - Sequence Modeling with Multiresolution Convolutional Memory [27.218134279968062]
我々は、MultiresLayerと呼ばれるシーケンスモデリングのための新しいビルディングブロックを構築します。
我々のモデルの主要な構成要素はマルチレゾリューション・コンボリューションであり、入力シーケンスにおけるマルチスケールトレンドをキャプチャする。
本モデルでは,多数のシーケンス分類と自己回帰密度推定タスクについて,最先端の性能を示す。
論文 参考訳(メタデータ) (2023-05-02T17:50:54Z) - Learning with Multigraph Convolutional Filters [153.20329791008095]
MSPモデルに基づいて情報を処理する階層構造として多グラフ畳み込みニューラルネットワーク(MGNN)を導入する。
また,MGNNにおけるフィルタ係数のトラクタブルな計算手法と,レイヤ間で転送される情報の次元性を低減するための低コストな手法を開発した。
論文 参考訳(メタデータ) (2022-10-28T17:00:50Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
品質を犠牲にすることなく、より小さなネットワークを使用できる汎用的な新しい入力符号化を提案する。
小さなニューラルネットワークは、勾配降下によって値が最適化された訓練可能な特徴ベクトルの多分解能ハッシュテーブルによって拡張される。
数桁の高速化を実現し、高品質なニューラルネットワークプリミティブを数秒でトレーニングすることができる。
論文 参考訳(メタデータ) (2022-01-16T07:22:47Z) - Point-Cloud Deep Learning of Porous Media for Permeability Prediction [0.0]
デジタル画像から多孔質媒体の透過性を予測するための新しいディープラーニングフレームワークを提案する。
我々は、固体行列と細孔空間の境界を点雲としてモデル化し、それらをポイントネットアーキテクチャに基づくニューラルネットワークへの入力として供給する。
論文 参考訳(メタデータ) (2021-07-18T22:59:21Z) - Wide-band butterfly network: stable and efficient inversion via
multi-frequency neural networks [1.2891210250935143]
広帯域散乱データから逆散乱マップを近似するために,広帯域蝶ネットワーク(WideBNet)と呼ばれるエンドツーエンドのディープラーニングアーキテクチャを導入する。
このアーキテクチャでは、バタフライの分解のような計算調和解析や、クーリー・テューキーFFTアルゴリズムのような伝統的なマルチスケール手法のツールが組み込まれている。
論文 参考訳(メタデータ) (2020-11-24T21:48:43Z) - A Greedy Algorithm for Quantizing Neural Networks [4.683806391173103]
本稿では,事前学習したニューラルネットワークの重みを定量化するための計算効率のよい新しい手法を提案する。
本手法は,複雑な再学習を必要とせず,反復的に層を定量化する手法である。
論文 参考訳(メタデータ) (2020-10-29T22:53:10Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Channel-Level Variable Quantization Network for Deep Image Compression [50.3174629451739]
チャネルレベルの可変量子化ネットワークを提案し、重要なチャネルに対してより多くの畳み込みを動的に割り当て、無視可能なチャネルに対して退避する。
提案手法は優れた性能を実現し,より優れた視覚的再構成を実現する。
論文 参考訳(メタデータ) (2020-07-15T07:20:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。