Multi-level Purcell effect and the impact of vibrational modes in
molecular quantum optics
- URL: http://arxiv.org/abs/2306.09435v1
- Date: Thu, 15 Jun 2023 18:27:40 GMT
- Title: Multi-level Purcell effect and the impact of vibrational modes in
molecular quantum optics
- Authors: Charlie Nation, Valentina Notararigo, and Alexandra Olaya-Castro
- Abstract summary: We study a manifestation of the Purcell effect in a bio-inspired photosynthetic dimer.
We provide a theoretical picture in terms of an effective non-Hermitian Hamiltonian.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increased decay rate of a two-level system weakly coupled to an optical
cavity, known as the Purcell effect, is a cornerstone of cavity QED. However,
the effect of cavity coupling is not well understood if the two-level system is
replaced by a multi-level interacting system. Motivated by experiments looking
to characterise molecular systems via exploiting a cavity interaction, we study
a manifestation of the Purcell effect in a bio-inspired photosynthetic dimer.
We focus in particular on how molecular vibrational modes, thought to play an
important role in photosynthetic exciton transport, impact the system-cavity
behaviour in the Purcell regime. We provide a theoretical picture in terms of
an effective non-Hermitian Hamiltonian, which extends the simple picture of a
Jaynes-Cummings model to the description of a `multi-level' Purcell effect,
where different levels have differing Purcell factors, with effective
cooperativities mediated by coherent vibrational interactions.
Related papers
- Non-Markovian effects in long-range polariton-mediated energy transfer [0.0]
We study the emission dynamics of a system consisting of two spatially separated layers of different species of molecules coupled to a common photon mode.
Our results shed light on polaritonic long-range energy transfer, and provide further understanding of the role of vibrational modes of relevance to the growing field of molecular polaritonics.
arXiv Detail & Related papers (2024-11-01T10:38:27Z) - Two-colour photon correlations probe coherent vibronic contributions to
electronic excitation transport under incoherent illumination [41.94295877935867]
We consider a prototype light-harvesting heterodimer exhibiting coherent and collective exciton-vibration interactions.
We show that coherent vibronic mechanisms strongly affect the asymmetries characteristic of time-resolved photon cross-correlations.
We discuss how such second-order correlation asymmetry establishes important connections between coherent vibronic interactions, directional exciton population transport, and violation of quantum detailed balance.
arXiv Detail & Related papers (2024-02-29T19:00:05Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Hybrid THz architectures for molecular polaritonics [1.7615102415144135]
Physical and chemical properties of materials can be modified by a resonant optical mode.
Here, we investigate several schemes of electromagnetic field confinement aimed at facilitating the collective coupling of a localized photonic mode to molecular vibrations in the terahertz region.
More importantly, we demonstrate enhanced vacuum Rabi splittings reaching up to 200 GHz when combining plasmonic resonances, photonic cavity modes and low-energy molecular resonances.
arXiv Detail & Related papers (2023-04-07T14:15:51Z) - Tailoring population transfer between two hyperfine ground states of
Rb87 [49.1574468325115]
We investigate the coherent control over a complex multi-level atomic system using the stimulated Raman adiabatic passage (STIRAP)
We demonstrate the ability to decompose the system into three- and four-level subsystems independently interacting with light beams.
arXiv Detail & Related papers (2022-10-21T14:57:21Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Pure Dephasing of Light-Matter Systems in the Ultrastrong and
Deep-Strong Coupling Regimes [0.21108097398435333]
Pure dephasing originates from the non-dissipative information exchange between quantum systems and environments.
Here we investigate how pure dephasing of one of the components of a hybrid quantum system affects the dephasing rate of the system transitions.
arXiv Detail & Related papers (2022-05-11T08:57:15Z) - Purcell-enhanced dipolar interactions in nanostructures [0.0]
Strong light-induced interactions between atoms are known to cause nonlinearities at a few-photon level.
Here, we combine the high densities achievable in thermal atomic vapors with an efficient coupling to a slot waveguide.
The results pave the way towards a robust scalable platform for quantum nonlinear optics and all-optical quantum information processing at room temperature.
arXiv Detail & Related papers (2021-12-21T13:11:59Z) - Moir\'e-induced optical non-linearities: Single and multi-photon
resonances [0.0]
Moir'e excitons promise a new platform with which to generate and manipulate hybrid quantum phases of light and matter.
We show that the steady states exhibit a rich phase diagram with pronounced bi-stabilities governed by multi-photon resonances.
In the presence of an incoherent pumping of excitons we find that the system can realise one- and multi-photon lasers.
arXiv Detail & Related papers (2021-08-13T11:47:44Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.