Enhanced photoisomerization with hybrid metallodielectric cavities based on mode interference
- URL: http://arxiv.org/abs/2412.10123v1
- Date: Fri, 13 Dec 2024 13:07:17 GMT
- Title: Enhanced photoisomerization with hybrid metallodielectric cavities based on mode interference
- Authors: Anael Ben-Asher, Thomas Schnappinger, Markus Kowalewski, Johannes Feist,
- Abstract summary: We investigate the effect of hybrid metallodielectric cavities on photoisomerization reactions.
interference in the spectral density due to a narrow photonic mode and a broad plasmonic mode that are coupled to each other enables hybrid cavities to provide an energy-selective Purcell effect.
- Score: 0.0
- License:
- Abstract: The ability to control chemical reactions by coupling organic molecules to confined light in a cavity has recently attracted much attention. While most previous studies have focused on single-mode photonic or plasmonic cavities, here we investigate the effect of hybrid metallodielectric cavities on photoisomerization reactions. Hybrid cavities, which support both photonic and plasmonic modes, offer unique opportunities that arise from the interplay between these two distinct types of modes. Specifically, we demonstrate that interference in the spectral density due to a narrow photonic mode and a broad plasmonic mode that are coupled to each other enables hybrid cavities to provide an energy-selective Purcell effect. This effect enhances electronic relaxation only to the desired molecular geometry, providing the ability to increase the yield of photoisomerization reactions. As a test case, we study the asymmetric proton transfer reaction in the electronic excited state of 3-aminoacrolein. Our results, which are robust for a range of realistic cavity parameters, highlight the advantages of hybrid cavities in cavity-induced photochemical processes.
Related papers
- Disentangling collective coupling in vibrational polaritons with double quantum coherence spectroscopy [0.0]
Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity.
We simulate two-dimensional infrared spectra of molecular vibrational polaritons based on the double quantum coherence technique.
arXiv Detail & Related papers (2024-10-01T08:24:40Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Cavity-enhanced single photon emission from a single impurity-bound
exciton [42.2225785045544]
Impurity-bound excitons inSe quantum wells are bright single photon emitters.
We demonstrate cavity-enhanced emission from a single impurity-bound exciton in aSe quantum well.
arXiv Detail & Related papers (2023-09-04T18:06:54Z) - Multi-level Purcell effect and the impact of vibrational modes in
molecular quantum optics [62.997667081978825]
We study a manifestation of the Purcell effect in a bio-inspired photosynthetic dimer.
We provide a theoretical picture in terms of an effective non-Hermitian Hamiltonian.
arXiv Detail & Related papers (2023-06-15T18:27:40Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Hybrid THz architectures for molecular polaritonics [1.7615102415144135]
Physical and chemical properties of materials can be modified by a resonant optical mode.
Here, we investigate several schemes of electromagnetic field confinement aimed at facilitating the collective coupling of a localized photonic mode to molecular vibrations in the terahertz region.
More importantly, we demonstrate enhanced vacuum Rabi splittings reaching up to 200 GHz when combining plasmonic resonances, photonic cavity modes and low-energy molecular resonances.
arXiv Detail & Related papers (2023-04-07T14:15:51Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Purcell-enhanced dipolar interactions in nanostructures [0.0]
Strong light-induced interactions between atoms are known to cause nonlinearities at a few-photon level.
Here, we combine the high densities achievable in thermal atomic vapors with an efficient coupling to a slot waveguide.
The results pave the way towards a robust scalable platform for quantum nonlinear optics and all-optical quantum information processing at room temperature.
arXiv Detail & Related papers (2021-12-21T13:11:59Z) - Understanding Radiative Transitions and Relaxation Pathways in
Plexcitons [0.0]
Molecular aggregates on plasmonic nanoparticles have emerged as attractive systems for the studies of cavity quantum electrodynamics.
We show that while the metal is responsible for destroying the coherence of the excitation, the molecular aggregate significantly participates in dissipating the energy.
We show that the dynamics beyond a few femtoseconds has to be cast in the language of hot electron distributions and excitons.
arXiv Detail & Related papers (2020-02-13T17:20:29Z) - Effect of Many Modes on Self-Polarization and Photochemical Suppression
in Cavities [0.0]
We show that as more photon modes are accounted for, physico-chemical phenomena can dramatically change.
As the number of cavity photon modes increases, the increasing deviation of these surfaces from the cavity-free Born-Oppenheimer surfaces, together with the interplay between photon emission and absorption inside the widening bands of these surfaces, leads to enhanced suppression.
arXiv Detail & Related papers (2020-01-21T03:55:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.