論文の概要: Multi-Scale Simulation of Complex Systems: A Perspective of Integrating Knowledge and Data
- arxiv url: http://arxiv.org/abs/2306.10275v2
- Date: Tue, 23 Jul 2024 09:23:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 19:59:51.017603
- Title: Multi-Scale Simulation of Complex Systems: A Perspective of Integrating Knowledge and Data
- Title(参考訳): 複雑システムのマルチスケールシミュレーション:知識とデータの統合の観点から
- Authors: Huandong Wang, Huan Yan, Can Rong, Yuan Yuan, Fenyu Jiang, Zhenyu Han, Hongjie Sui, Depeng Jin, Yong Li,
- Abstract要約: 我々は、知識とデータの観点から、複雑なシステムのマルチスケールシミュレーションに関する文献を体系的にレビューする。
我々は,マルチスケールモデリングとシミュレーションの主な目的を,明瞭なスケールのシナリオと不明瞭なスケールのシナリオを考慮し,5つのカテゴリに分けた。
本稿では,一般的な物質システムや社会システムにおけるマルチスケールシミュレーションの適用について紹介する。
- 参考スコア(独自算出の注目度): 25.582280429427833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex system simulation has been playing an irreplaceable role in understanding, predicting, and controlling diverse complex systems. In the past few decades, the multi-scale simulation technique has drawn increasing attention for its remarkable ability to overcome the challenges of complex system simulation with unknown mechanisms and expensive computational costs. In this survey, we will systematically review the literature on multi-scale simulation of complex systems from the perspective of knowledge and data. Firstly, we will present background knowledge about simulating complex system simulation and the scales in complex systems. Then, we divide the main objectives of multi-scale modeling and simulation into five categories by considering scenarios with clear scale and scenarios with unclear scale, respectively. After summarizing the general methods for multi-scale simulation based on the clues of knowledge and data, we introduce the adopted methods to achieve different objectives. Finally, we introduce the applications of multi-scale simulation in typical matter systems and social systems.
- Abstract(参考訳): 複雑なシステムシミュレーションは、様々な複雑なシステムの理解、予測、制御において、相応の役割を果たす。
過去数十年間、このマルチスケールシミュレーション技術は、未知の機構と高価な計算コストを伴う複雑なシステムシミュレーションの課題を克服する驚くべき能力に注目が集まってきた。
本稿では,知識とデータの観点から,複雑なシステムのマルチスケールシミュレーションに関する文献を体系的にレビューする。
まず、複雑なシステムシミュレーションと複雑なシステムにおけるスケールのシミュレーションに関する背景知識を示す。
そこで我々は,マルチスケールモデリングとシミュレーションの主な目的を,明瞭なスケールのシナリオと不明瞭なスケールのシナリオを考慮し,5つのカテゴリに分けた。
知識とデータの手がかりに基づくマルチスケールシミュレーションの一般的な手法を要約した後、異なる目的を達成するための採用手法を紹介した。
最後に,一般的な物質システムや社会システムにおけるマルチスケールシミュレーションの適用について紹介する。
関連論文リスト
- Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
本稿では,粒子系の空間的および時間的依存性を特徴付ける新しい学習ベースシミュレーションモデルを提案する。
我々は,GNSTODEのシミュレーション性能を,重力とクーロンの2つの実世界の粒子系上で実証的に評価した。
論文 参考訳(メタデータ) (2023-05-21T03:51:03Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
シミュレーションを利用して様々な物理システムやプロセスを調べる研究者を支援する機械学習ベースのデータジェネレータフレームワークを提案する。
まず、シミュレーション結果を予測するために、限られたシミュレートされたデータセットを使用して教師付き予測モデルをトレーニングする。
その後、強化学習エージェントを訓練し、教師付きモデルを利用して正確なシミュレーションライクなデータを生成する。
論文 参考訳(メタデータ) (2023-05-16T17:31:50Z) - Challenges and opportunities for machine learning in multiscale
computational modeling [0.0]
複雑なマルチスケールシステムの解法は、解空間の高次元性のために計算的に一様である。
機械学習(ML)は、従来の数値手法のサロゲートとして機能し、加速し、拡張できる有望なソリューションとして登場した。
本稿では、複雑なマルチスケールモデリングとシミュレーションにMLを使う機会と課題について述べる。
論文 参考訳(メタデータ) (2023-03-22T02:04:39Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
本調査は,モデリングとシミュレーションの分野における最近のトレンドを包括的に概観することを目的としている。
まずは、シミュレーターを実装するフレームワークの開発の背後にあるモチベーションから始めます。
我々は,既存のシミュレータの機能,近似,産業的有効性に基づいて,新しい一貫した一貫した分類を行う。
論文 参考訳(メタデータ) (2022-06-22T19:33:21Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
複雑なシステム力学の離散時間シミュレーション表現を学習する可能性について検討する。
この結果から,本アルゴリズムは,意味のあるイベントを持つ複数のフィールドにおいて,複雑なネットワークダイナミクスをデータ効率よくキャプチャできることがわかった。
論文 参考訳(メタデータ) (2022-05-04T21:33:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - The 4th International Workshop on Smart Simulation and Modelling for
Complex Systems [4.489415125484399]
コンピュータベースのモデリングとシミュレーションは、人間が異なるドメインのシステムを理解するのに役立つツールとなっている。
マルチエージェントシステムのようなスマートシステムは、複雑なシステムのモデリングとシミュレーションにおいて、利点と大きなポテンシャルを示してきた。
論文 参考訳(メタデータ) (2021-02-01T21:40:28Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
本稿では,大規模シミュレーションをブリッジし,注文モデルを削減し,実効ダイナミクスを学習するシステムフレームワークを提案する。
LEDは複雑なシステムの正確な予測に新しい強力なモダリティを提供する。
LEDは化学から流体力学に至るまでのシステムに適用でき、計算の労力を最大2桁まで削減できる。
論文 参考訳(メタデータ) (2020-06-24T02:35:51Z) - Combining Machine Learning with Knowledge-Based Modeling for Scalable
Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal
Systems [48.7576911714538]
我々は、過去のデータを予測に組み込む上で、機械学習を必須のツールとして活用しようと試みる。
i)並列機械学習予測手法と(ii)ハイブリッド手法の2つの手法を組み合わせて,知識ベースコンポーネントと機械学習ベースコンポーネントからなる複合予測システムを提案する。
i) と (ii) を組み合わせることで、非常に大規模なシステムに優れた性能を与えることができるだけでなく、並列機械学習コンポーネントを訓練するのに必要となる時系列データの長さが、並列化なしで必要なものよりも劇的に少ないことを実証した。
論文 参考訳(メタデータ) (2020-02-10T23:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。