論文の概要: QCNeXt: A Next-Generation Framework For Joint Multi-Agent Trajectory
Prediction
- arxiv url: http://arxiv.org/abs/2306.10508v1
- Date: Sun, 18 Jun 2023 09:40:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 20:13:46.994503
- Title: QCNeXt: A Next-Generation Framework For Joint Multi-Agent Trajectory
Prediction
- Title(参考訳): qcnext:ジョイントマルチエージェント軌道予測のための次世代フレームワーク
- Authors: Zikang Zhou, Zihao Wen, Jianping Wang, Yung-Hui Li, Yu-Kai Huang
- Abstract要約: 路上エージェントの将来の軌跡の同時分布を推定することは自動運転に不可欠である。
本稿では,QCNeXtと呼ばれるマルチエージェント軌道予測のための次世代フレームワークを提案する。
提案手法はArgoverse 2マルチエージェント動作予測ベンチマークで1位である。
- 参考スコア(独自算出の注目度): 5.312631388611489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the joint distribution of on-road agents' future trajectories is
essential for autonomous driving. In this technical report, we propose a
next-generation framework for joint multi-agent trajectory prediction called
QCNeXt. First, we adopt the query-centric encoding paradigm for the task of
joint multi-agent trajectory prediction. Powered by this encoding scheme, our
scene encoder is equipped with permutation equivariance on the set elements,
roto-translation invariance in the space dimension, and translation invariance
in the time dimension. These invariance properties not only enable accurate
multi-agent forecasting fundamentally but also empower the encoder with the
capability of streaming processing. Second, we propose a multi-agent DETR-like
decoder, which facilitates joint multi-agent trajectory prediction by modeling
agents' interactions at future time steps. For the first time, we show that a
joint prediction model can outperform marginal prediction models even on the
marginal metrics, which opens up new research opportunities in trajectory
prediction. Our approach ranks 1st on the Argoverse 2 multi-agent motion
forecasting benchmark, winning the championship of the Argoverse Challenge at
the CVPR 2023 Workshop on Autonomous Driving.
- Abstract(参考訳): 路上エージェントの将来の軌跡の同時分布を推定することは自動運転に不可欠である。
本稿では,QCNeXtと呼ばれるマルチエージェント軌道予測のための次世代フレームワークを提案する。
まず,複合マルチエージェント軌道予測のタスクとして,クエリ中心のエンコーディングパラダイムを採用する。
この符号化方式により, シーンエンコーダは, 設定要素の置換等価性, 空間次元の回転変換不変性, 時間次元の変換不変性を備える。
これらの不変性は、精度の高いマルチエージェント予測を可能にするだけでなく、エンコーダにストリーミング処理能力を与える。
第2に,エージェントの相互作用をモデル化することで,複数エージェントの軌道予測を容易にする多エージェントDETR型デコーダを提案する。
連立予測モデルが限界指標においても限界予測モデルを上回ることが初めて示され,軌道予測における新たな研究機会が開かれた。
我々の手法はArgoverse 2のマルチエージェントモーション予測ベンチマークで1位にランクされ、CVPR 2023 Workshop on Autonomous DrivingでArgoverse Challengeのチャンピオンを獲得した。
関連論文リスト
- Multi-Agent Trajectory Prediction with Difficulty-Guided Feature Enhancement Network [1.5888246742280365]
軌道予測は、交通参加者の将来の動きを予測することを目的として、自動運転に不可欠である。
伝統的な方法は通常、エージェントの軌道に関する全体論的推論を行い、エージェント間の難易度の違いを無視する。
本稿では,エージェント間の予測難易度差を利用した,DGFNet(DifficultyGuided Feature Enhancement)を提案する。
論文 参考訳(メタデータ) (2024-07-26T07:04:30Z) - MotionLM: Multi-Agent Motion Forecasting as Language Modeling [15.317827804763699]
マルチエージェント動作予測のための言語モデルであるMotionLMを提案する。
本手法は,対話的なスコアリングに先立って個々のエージェントの軌道生成を行う,ポストホック相互作用をバイパスする。
モデルの逐次分解は、時間的因果条件のロールアウトを可能にする。
論文 参考訳(メタデータ) (2023-09-28T15:46:25Z) - ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation [0.0]
ADAPTはダイナミックウェイトラーニングによってシーン内の全てのエージェントの軌道を共同で予測するための新しいアプローチである。
提案手法は, 単一エージェントと複数エージェントの設定において, 最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-26T13:41:51Z) - MTR++: Multi-Agent Motion Prediction with Symmetric Scene Modeling and
Guided Intention Querying [110.83590008788745]
自律運転システムにとって、複雑な運転シナリオを理解し、情報的な決定を下すためには、動きの予測が不可欠である。
本稿では,これらの課題に対処するためのMotion TRansformer (MTR) フレームワークを提案する。
最初のMTRフレームワークは、学習可能な意図クエリを備えたトランスフォーマーエンコーダ-デコーダ構造を利用する。
複数のエージェントに対するマルチモーダル動作を同時に予測するMTR++フレームワークを導入する。
論文 参考訳(メタデータ) (2023-06-30T16:23:04Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
軌道予測は、危険を予測して信頼性の高い自動運転システムを構築する上で重要な課題である。
本稿では,運転環境におけるエージェントの複雑な動作をよりよく表現する,軌道予測のための効率的なマスク付きオートエンコーダを提案する。
複数エージェント設定と単一エージェント設定の両方の実験結果から,Traj-MAEが最先端手法と競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2023-03-12T16:23:27Z) - Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory
Forecasting [39.73793468422024]
この研究はまず、相互作用モジュールから生じる不確実性をモデル化する新しい概念であるコラボレーティブ不確実性(CU)を提案する。
我々は、回帰と不確実性推定の両方を行うために、元の置換同変不確かさ推定器を備えた一般的なCU対応回帰フレームワークを構築した。
提案するフレームワークを,プラグインモジュールとして現在のSOTAマルチエージェント軌道予測システムに適用する。
論文 参考訳(メタデータ) (2022-07-11T21:17:41Z) - THOMAS: Trajectory Heatmap Output with learned Multi-Agent Sampling [2.424910201171407]
本稿では,高速かつ同時エージェントによる将来のヒートマップ推定のための統一モデルアーキテクチャを提案する。
シーン一貫性のある予測を生成することは、衝突のない軌道の単なる世代を越えている。
我々は、Interaction Multi-agent Prediction Challengeについて報告し、オンラインテストリーダーボードで1st$をランク付けした。
論文 参考訳(メタデータ) (2021-10-13T10:05:47Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。