論文の概要: Virtual Human Generative Model: Masked Modeling Approach for Learning
Human Characteristics
- arxiv url: http://arxiv.org/abs/2306.10656v2
- Date: Tue, 15 Aug 2023 01:26:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 16:18:10.904406
- Title: Virtual Human Generative Model: Masked Modeling Approach for Learning
Human Characteristics
- Title(参考訳): 仮想人間の生成モデル:人間の特性学習のためのマスクモデルアプローチ
- Authors: Kenta Oono, Nontawat Charoenphakdee, Kotatsu Bito, Zhengyan Gao,
Yoshiaki Ota, Shoichiro Yamaguchi, Yohei Sugawara, Shin-ichi Maeda, Kunihiko
Miyoshi, Yuki Saito, Koki Tsuda, Hiroshi Maruyama, Kohei Hayashi
- Abstract要約: 医療、ライフスタイル、パーソナリティの属性を推定する機械学習モデルである仮想人間生成モデル(VHGM)を提案する。
VHGMは、マスクモデルを用いて訓練された深い生成モデルであり、既知の属性に条件付けられた属性の結合分布を学習する。
医療属性の仮想計測やライフスタイルの仮説検証など,ユーザシナリオを実証するアプリケーションをいくつか提示する。
- 参考スコア(独自算出の注目度): 15.523039838543356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying the relationship between healthcare attributes, lifestyles, and
personality is vital for understanding and improving physical and mental
conditions. Machine learning approaches are promising for modeling their
relationships and offering actionable suggestions. In this paper, we propose
Virtual Human Generative Model (VHGM), a machine learning model for estimating
attributes about healthcare, lifestyles, and personalities. VHGM is a deep
generative model trained with masked modeling to learn the joint distribution
of attributes conditioned on known ones. Using heterogeneous tabular datasets,
VHGM learns more than 1,800 attributes efficiently. We numerically evaluate the
performance of VHGM and its training techniques. As a proof-of-concept of VHGM,
we present several applications demonstrating user scenarios, such as virtual
measurements of healthcare attributes and hypothesis verifications of
lifestyles.
- Abstract(参考訳): 健康属性、ライフスタイル、パーソナリティの関係を特定することは、身体的および精神的な状態の理解と改善に不可欠である。
機械学習のアプローチは、それらの関係をモデル化し、実行可能な提案を提供する。
本稿では,ヘルスケア,ライフスタイル,パーソナリティに関する属性を推定する機械学習モデルであるvirtual human generative model (vhgm)を提案する。
vhgmは、既知の属性の結合分布を学ぶためにマスクモデルで訓練された深い生成モデルである。
不均一な表型データセットを使用して、VHGMは1,800以上の属性を効率的に学習する。
VHGMとその訓練技術の性能を数値的に評価する。
VHGMの概念実証として,医療属性の仮想計測やライフスタイルの仮説検証など,ユーザシナリオを示すいくつかのアプリケーションを提案する。
関連論文リスト
- HealthGPT: A Medical Large Vision-Language Model for Unifying Comprehension and Generation via Heterogeneous Knowledge Adaptation [68.4316501012718]
HealthGPTは医療用大規模視線モデル(Med-LVLM)である
医療的な視覚的理解と生成能力を統合された自己回帰パラダイムに統合する。
論文 参考訳(メタデータ) (2025-02-14T00:42:36Z) - Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
本稿では,フェデレーションサバイバル分析の分野,特にCox Proportional Hazards(CoxPH)モデルについて概説する。
本稿では,合成データセットと実世界のアプリケーション間のモデル精度を向上させるために,特徴ベースのクラスタリングを用いたFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T18:34:20Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - Multimodal Large Language Model is a Human-Aligned Annotator for Text-to-Image Generation [87.50120181861362]
VisionPreferは高品質できめ細かい選好データセットで、複数の選好面をキャプチャする。
我々は、VisionPrefer上で報酬モデルVP-Scoreをトレーニングし、テキストから画像への生成モデルのトレーニングを指導し、VP-Scoreの嗜好予測精度は人間のアノテーションに匹敵する。
論文 参考訳(メタデータ) (2024-04-23T14:53:15Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - StyleGAN-Human: A Data-Centric Odyssey of Human Generation [96.7080874757475]
この研究は、データ中心の観点から、"データエンジニアリング"における複数の重要な側面を調査します。
さまざまなポーズやテクスチャを抽出した230万以上のサンプルで、大規模な人間の画像データセットを収集し、注釈付けします。
本稿では,データサイズ,データ分布,データアライメントといった,スタイルGANに基づく人為的生成のためのデータ工学における3つの重要な要素について精査する。
論文 参考訳(メタデータ) (2022-04-25T17:55:08Z) - Towards Trustworthy Cross-patient Model Development [3.109478324371548]
本研究は,全ての患者と1人の患者を対象に訓練を行った際のモデル性能と説明可能性の差異について検討した。
以上の結果から,患者の人口動態は,パフォーマンスや説明可能性,信頼性に大きな影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2021-12-20T10:51:04Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Interpretable machine learning for high-dimensional trajectories of
aging health [0.0]
我々は、健康と生存の個人的高齢軌跡の計算モデルを構築した。
身体的、機能的、生物学的な変数を含み、人口動態、生活様式、医学的背景情報に依存する。
我々のモデルは大規模縦型データセットにスケーラブルであり、健康変数間の有向相互作用の解釈可能なネットワークを推定する。
論文 参考訳(メタデータ) (2021-05-07T17:42:15Z) - Evaluating the performance of personal, social, health-related,
biomarker and genetic data for predicting an individuals future health using
machine learning: A longitudinal analysis [0.0]
この研究の目的は、個人、社会、健康関連、バイオマーカーおよび遺伝データの相対的貢献を個人における将来の健康の予測因子として識別するために機械学習アプローチを適用することである。
ニューラルネットワークによるディープラーニングとXGBoostという,予測モデル構築に2つの機械学習アプローチが使用された。
その結果、健康関連の指標が将来の健康状態を最も予測し、遺伝データが劣っていることがわかった。
論文 参考訳(メタデータ) (2021-04-26T12:31:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。