論文の概要: Probabilistic Matching of Real and Generated Data Statistics in
Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2306.10943v2
- Date: Thu, 8 Feb 2024 21:17:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 20:54:48.328711
- Title: Probabilistic Matching of Real and Generated Data Statistics in
Generative Adversarial Networks
- Title(参考訳): 生成逆数ネットワークにおける実データと生成データの確率的マッチング
- Authors: Philipp Pilar, Niklas Wahlstr\"om
- Abstract要約: 本稿では,あるデータ統計量の分布が実データの分布と一致することを確実にする手法を提案する。
提案手法を合成データセットと実世界のデータセットで評価し,提案手法の性能向上を実証した。
- 参考スコア(独自算出の注目度): 0.10878040851637999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks constitute a powerful approach to generative
modeling. While generated samples often are indistinguishable from real data,
mode-collapse may occur and there is no guarantee that they will follow the
true data distribution. For scientific applications in particular, it is
essential that the true distribution is well captured by the generated
distribution. In this work, we propose a method to ensure that the
distributions of certain generated data statistics coincide with the respective
distributions of the real data. In order to achieve this, we add a new loss
term to the generator loss function, which quantifies the difference between
these distributions via suitable f-divergences. Kernel density estimation is
employed to obtain representations of the true distributions, and to estimate
the corresponding generated distributions from minibatch values at each
iteration. When compared to other methods, our approach has the advantage that
the complete shapes of the distributions are taken into account. We evaluate
the method on a synthetic dataset and a real-world dataset and demonstrate
improved performance of our approach.
- Abstract(参考訳): 生成逆ネットワークは生成モデリングに対する強力なアプローチを構成する。
生成されたサンプルは実際のデータと区別できないことが多いが、モード崩壊が起こり、真のデータ分布に従う保証はない。
特に科学的応用においては、真の分布が生成した分布によってよく捉えられることが不可欠である。
本研究では,生成されたデータ統計の分布が実データの分布と一致していることを保証する手法を提案する。
これを達成するために、ジェネレータ損失関数に新たな損失項を追加し、適切なf-divergencesを介してこれらの分布の違いを定量化する。
実分布の表現を得るためにカーネル密度推定を行い、各イテレーションにおけるミニバッチ値から対応する生成分布を推定する。
他の手法と比較すると,分布の完全な形状が考慮されるという利点がある。
本手法を合成データセットと実世界のデータセットで評価し,提案手法の性能向上を実証する。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Generative Assignment Flows for Representing and Learning Joint Distributions of Discrete Data [2.6499018693213316]
本稿では,多数の離散確率変数の結合確率分布を表現するための新しい生成モデルを提案する。
全ての離散な関節分布のメタ・プレプレックスにおけるセグレ写像による流れの埋め込みは、任意の対象分布を原理的に表すことができることを保証している。
我々のアプローチは、結合された離散変数のモデリングの第一原理から強い動機を持っている。
論文 参考訳(メタデータ) (2024-06-06T21:58:33Z) - Deep Generative Sampling in the Dual Divergence Space: A Data-efficient & Interpretative Approach for Generative AI [29.13807697733638]
自然画像の生成的サンプリングにおける顕著な成果の上に構築する。
我々は、画像に似たサンプルを生成するという、画期的な挑戦を、潜在的に過度に野心的に提案する。
統計上の課題は、小さなサンプルサイズであり、時には数百人の被験者で構成されている。
論文 参考訳(メタデータ) (2024-04-10T22:35:06Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Investigating Shifts in GAN Output-Distributions [5.076419064097734]
本稿では,実学習データとGAN生成データの分布の可観測的変化を系統的に調査するためのループ学習手法を提案する。
全体として、これらの手法を組み合わせることで、現在のGANアルゴリズムの自然的制限を爆発的に調査することができる。
論文 参考訳(メタデータ) (2021-12-28T09:16:55Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
ドメイン適応と予測不確実性文学を結びつけて、挑戦的な未知分布のモデル精度を予測する。
分類器の予測における信頼度(DoC)の差は,様々な変化に対して,分類器の性能変化を推定することに成功した。
具体的には, 合成分布と自然分布の区別について検討し, その単純さにもかかわらず, DoCは分布差の定量化に優れることを示した。
論文 参考訳(メタデータ) (2021-07-07T15:50:18Z) - GENs: Generative Encoding Networks [4.269725092203672]
本稿では,未知のデータ分布と未知のターゲット分布を一致させるために,Jensen-Shannon分散を推定するための非パラメトリック密度法を提案し,解析する。
この分析法には、サンプル量のトレーニングが低いときのより良い振舞い、証明可能な収束特性、比較的少ないパラメータ、分析的に導出できるパラメータなど、いくつかの利点がある。
論文 参考訳(メタデータ) (2020-10-28T23:40:03Z) - Distribution Approximation and Statistical Estimation Guarantees of
Generative Adversarial Networks [82.61546580149427]
GAN(Generative Adversarial Networks)は教師なし学習において大きな成功を収めている。
本稿では,H'older空間における密度データ分布推定のためのGANの近似と統計的保証を提供する。
論文 参考訳(メタデータ) (2020-02-10T16:47:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。