論文の概要: Synergistic Approach for Simultaneous Optimization of Monolingual, Cross-lingual, and Multilingual Information Retrieval
- arxiv url: http://arxiv.org/abs/2408.10536v1
- Date: Tue, 20 Aug 2024 04:30:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 15:13:43.993827
- Title: Synergistic Approach for Simultaneous Optimization of Monolingual, Cross-lingual, and Multilingual Information Retrieval
- Title(参考訳): 単言語・多言語・多言語情報検索の同時最適化のための相乗的アプローチ
- Authors: Adel Elmahdy, Sheng-Chieh Lin, Amin Ahmad,
- Abstract要約: 本稿では,モノリンガル,クロスリンガル,マルチリンガル設定におけるゼロショット検索性能を改善するためのハイブリッドバッチ学習手法を提案する。
このアプローチは、データセットサイズに基づいてサンプリングされたモノリンガルとクロスリンガルの問合せ対のバッチを混合したマルチリンガル言語モデルを微調整する。
- 参考スコア(独自算出の注目度): 5.446052898856584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information retrieval across different languages is an increasingly important challenge in natural language processing. Recent approaches based on multilingual pre-trained language models have achieved remarkable success, yet they often optimize for either monolingual, cross-lingual, or multilingual retrieval performance at the expense of others. This paper proposes a novel hybrid batch training strategy to simultaneously improve zero-shot retrieval performance across monolingual, cross-lingual, and multilingual settings while mitigating language bias. The approach fine-tunes multilingual language models using a mix of monolingual and cross-lingual question-answer pair batches sampled based on dataset size. Experiments on XQuAD-R, MLQA-R, and MIRACL benchmark datasets show that the proposed method consistently achieves comparable or superior results in zero-shot retrieval across various languages and retrieval tasks compared to monolingual-only or cross-lingual-only training. Hybrid batch training also substantially reduces language bias in multilingual retrieval compared to monolingual training. These results demonstrate the effectiveness of the proposed approach for learning language-agnostic representations that enable strong zero-shot retrieval performance across diverse languages.
- Abstract(参考訳): 異なる言語間での情報検索は、自然言語処理においてますます重要な課題となっている。
近年,多言語事前学習型言語モデルに基づくアプローチは顕著な成功を収めているが,一言語的,多言語的,多言語的な検索性能を犠牲にして最適化することがしばしばある。
本稿では,言語バイアスを軽減しつつ,単言語,言語横断,多言語設定におけるゼロショット検索性能を同時に向上するハイブリッドバッチ学習手法を提案する。
このアプローチは、データセットサイズに基づいてサンプリングされたモノリンガルとクロスリンガルの問合せ対のバッチを混合したマルチリンガル言語モデルを微調整する。
XQuAD-R, MLQA-R, MIRACLベンチマークデータセットを用いた実験により, 提案手法は, モノリンガルのみのトレーニングやクロスリンガルのみのトレーニングと比較して, 様々な言語をまたいだゼロショット検索や検索タスクにおいて, 同等あるいは優れた結果が得られることを示した。
ハイブリッドバッチトレーニングは、単言語学習と比較して、多言語検索における言語バイアスを大幅に低減する。
これらの結果は,多言語間のゼロショット検索性能を向上する言語に依存しない表現を学習するための提案手法の有効性を示す。
関連論文リスト
- Improving In-context Learning of Multilingual Generative Language Models with Cross-lingual Alignment [42.624862172666624]
本稿では,一対の翻訳文を利用する単純な言語間アライメントフレームワークを提案する。
多言語コントラスト学習を通じて、異なる言語にまたがる内部文表現を整合させる。
実験結果から,事前学習トークンが0.1文未満であっても,アライメントフレームワークは生成言語モデルの言語間相互性を大幅に向上させることが明らかとなった。
論文 参考訳(メタデータ) (2023-11-14T11:24:08Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Meta-Learning a Cross-lingual Manifold for Semantic Parsing [75.26271012018861]
新しい言語をサポートするためにセマンティックをローカライズするには、効果的な言語間一般化が必要である。
本稿では,言語間移動において,最大サンプル効率で注釈付きセマンティックを学習するための一階メタ学習アルゴリズムを提案する。
ATIS上の6つの言語にまたがる結果は、ステップの組み合わせによって、各新言語におけるソーストレーニングデータの10パーセントを正確なセマンティクスでサンプリングできることを示している。
論文 参考訳(メタデータ) (2022-09-26T10:42:17Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - How Good is Your Tokenizer? On the Monolingual Performance of
Multilingual Language Models [96.32118305166412]
本研究では,5つの単一言語下流タスクのセットに基づいて,事前学習可能な単言語モデルを持つ9種類の言語について検討した。
多言語モデルの語彙で適切に表現された言語は、単言語モデルよりも性能が著しく低下する。
論文 参考訳(メタデータ) (2020-12-31T14:11:00Z) - Multilingual Transfer Learning for QA Using Translation as Data
Augmentation [13.434957024596898]
我々は,多言語組込みを意味空間に近づけることで,言語間伝達を改善する戦略を検討する。
言語敵対的トレーニングと言語仲裁フレームワークという2つの新しい戦略を提案し、(ゼロリソースの)クロスリンガルトランスファーのパフォーマンスを大幅に改善します。
実験により,提案モデルは,最近導入された多言語MLQAデータセットとTyDiQAデータセットにおいて,以前のゼロショットベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-10T20:29:34Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。