Hyperbolic Active Learning for Semantic Segmentation under Domain Shift
- URL: http://arxiv.org/abs/2306.11180v5
- Date: Tue, 4 Jun 2024 09:11:21 GMT
- Title: Hyperbolic Active Learning for Semantic Segmentation under Domain Shift
- Authors: Luca Franco, Paolo Mandica, Konstantinos Kallidromitis, Devin Guillory, Yu-Teng Li, Trevor Darrell, Fabio Galasso,
- Abstract summary: HALO sets a new state-of-the-art in active learning for semantic segmentation under domain shift.
It is the first active learning approach that surpasses the performance of supervised domain adaptation while using only a small portion of labels.
- Score: 45.051035873942276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a hyperbolic neural network approach to pixel-level active learning for semantic segmentation. Analysis of the data statistics leads to a novel interpretation of the hyperbolic radius as an indicator of data scarcity. In HALO (Hyperbolic Active Learning Optimization), for the first time, we propose the use of epistemic uncertainty as a data acquisition strategy, following the intuition of selecting data points that are the least known. The hyperbolic radius, complemented by the widely-adopted prediction entropy, effectively approximates epistemic uncertainty. We perform extensive experimental analysis based on two established synthetic-to-real benchmarks, i.e. GTAV $\rightarrow$ Cityscapes and SYNTHIA $\rightarrow$ Cityscapes. Additionally, we test HALO on Cityscape $\rightarrow$ ACDC for domain adaptation under adverse weather conditions, and we benchmark both convolutional and attention-based backbones. HALO sets a new state-of-the-art in active learning for semantic segmentation under domain shift and it is the first active learning approach that surpasses the performance of supervised domain adaptation while using only a small portion of labels (i.e., 1%).
Related papers
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Threshold-adaptive Unsupervised Focal Loss for Domain Adaptation of
Semantic Segmentation [25.626882426111198]
Unsupervised domain adaptation (UDA) for semantic segmentation has recently gained increasing research attention.
In this paper, we propose a novel two-stage entropy-based UDA method for semantic segmentation.
Our method achieves state-of-the-art 58.4% and 59.6% mIoUs on SYNTHIA-to-Cityscapes and GTA5-to-Cityscapes using DeepLabV2 and competitive performance using the lightweight BiSeNet.
arXiv Detail & Related papers (2022-08-23T03:48:48Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation [14.050836886292869]
We introduce feature-level space-shaping regularization strategies to reduce the domain discrepancy in semantic segmentation.
We verify the effectiveness of such methods in the autonomous driving setting.
arXiv Detail & Related papers (2021-04-06T16:07:22Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
Domain-Agnostic Contrastive Learning (DACL) is a two-stage unsupervised domain adaptation framework with cyclic adversarial training and contrastive loss.
Our proposed approach achieves better performance in the monocular depth estimation task compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-10T07:06:03Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
We focus on the task of semantic segmentation, where annotated synthetic data are aplenty, but annotating real data is laborious.
The first criterion, inspired by visual psychophysics, is that the map between the two image domains be phase-preserving.
The second criterion aims to leverage ecological statistics, or regularities in the scene which are manifest in any image of it, regardless of the characteristics of the illuminant or the imaging sensor.
arXiv Detail & Related papers (2020-04-10T06:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.