Control of a Josephson Digital Phase Detector via an SFQ-based Flux Bias Driver
- URL: http://arxiv.org/abs/2412.11961v2
- Date: Thu, 16 Jan 2025 07:53:01 GMT
- Title: Control of a Josephson Digital Phase Detector via an SFQ-based Flux Bias Driver
- Authors: Laura Di Marino, Luigi Di Palma, Michele Riccio, Francesco Fienga, Marco Arzeo, Oleg Mukhanov,
- Abstract summary: cryogenic on-chip qubit readout based on a Josephson Digital Phase Detector (JDPD)
Effect of the flux bias characteristics on the JDPD performances is studied numerically.
- Score: 0.0
- License:
- Abstract: Quantum computation requires high-fidelity qubit readout, preserving the quantum state. In the case of superconducting (SC) qubits, readout is typically performed using a complex analog experimental setup operated at room temperature, which poses significant technological and economic barriers to large system scalability. An alternative approach is to perform a cryogenic on-chip qubit readout based on a Josephson Digital Phase Detector (JDPD): a flux switchable device capable of digitizing the phase sign of a coherent input. The readout operation includes the flux excitation of the JDPD to evolve from a single to a double-minima potential. In this work, the effect of the flux bias characteristics on the JDPD performances is studied numerically. To meet the identified requirements that maximize detection fidelity and tackle the engineering challenges, a cryogenic on-chip Single Flux Quantum based flux bias driver is proposed and discussed.
Related papers
- Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems [1.2499537119440245]
Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
arXiv Detail & Related papers (2024-10-15T00:48:01Z) - Engineering Si-Qubit MOSFETs: A Phase-Field Modeling Approach Integrating Quantum-Electrostatics at Cryogenic Temperatures [0.3015860973324597]
This study employs advanced phase-field modeling to investigate Si-based qubits.
We adopt a comprehensive modeling approach, utilizing full-wave treatment of the Schrodinger equation solutions, coupled with the Poisson equation at cryogenic temperatures.
arXiv Detail & Related papers (2024-10-06T03:25:07Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Stochastic Model of Qudit Measurement for Superconducting Quantum Information Processing [0.0]
This thesis focuses on modeling the dispersive measurement of a transmon qutrit in an open quantum system using quadrature detections.
Research has demonstrated the possibility of driving higher-order transitions in a transmon or designing innovative multimode superconducting circuits.
arXiv Detail & Related papers (2023-12-03T03:57:49Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Discriminating the Phase of a Coherent Tone with a Flux-Switchable
Superconducting Circuit [50.591267188664666]
We propose a new phase detection technique based on a flux-switchable superconducting circuit.
The Josephson digital phase detector (JDPD) is capable of discriminating between two phase values of a coherent input tone.
arXiv Detail & Related papers (2023-06-20T08:09:37Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.