論文の概要: Implicit neural representation with physics-informed neural networks for
the reconstruction of the early part of room impulse responses
- arxiv url: http://arxiv.org/abs/2306.11509v1
- Date: Tue, 20 Jun 2023 13:01:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 14:26:41.955817
- Title: Implicit neural representation with physics-informed neural networks for
the reconstruction of the early part of room impulse responses
- Title(参考訳): 物理インフォームドニューラルネットワークを用いた室内インパルス応答の初期部分再構成のためのインプシット神経表現
- Authors: Mirco Pezzoli, Fabio Antonacci, Augusto Sarti
- Abstract要約: 物理インフォームドニューラルネットワークを用いて、欠室インパルス応答の初期部分を線形配列で再構成する。
提案モデルは,最先端の深層学習および圧縮センシング技術に関して,高精度な再構築と性能を実現する。
- 参考スコア(独自算出の注目度): 16.89505645696765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently deep learning and machine learning approaches have been widely
employed for various applications in acoustics. Nonetheless, in the area of
sound field processing and reconstruction classic methods based on the
solutions of wave equation are still widespread. Recently, physics-informed
neural networks have been proposed as a deep learning paradigm for solving
partial differential equations which govern physical phenomena, bridging the
gap between purely data-driven and model based methods. Here, we exploit
physics-informed neural networks to reconstruct the early part of missing room
impulse responses in an uniform linear array. This methodology allows us to
exploit the underlying law of acoustics, i.e., the wave equation, forcing the
neural network to generate physically meaningful solutions given only a limited
number of data points. The results on real measurements show that the proposed
model achieves accurate reconstruction and performance in line with respect to
state-of-the-art deep-learning and compress sensing techniques while
maintaining a lightweight architecture.
- Abstract(参考訳): 近年、音響学の様々な応用にディープラーニングと機械学習のアプローチが広く採用されている。
しかし,音場処理やリコンストラクションでは,波動方程式の解法に基づく古典的手法が普及している。
近年、物理インフォームドニューラルネットワークは、物理現象を管理する偏微分方程式を解くためのディープラーニングパラダイムとして提案され、純粋にデータ駆動とモデルに基づく方法のギャップを埋めている。
そこで, 物理インフォームドニューラルネットワークを用いて, 部屋のインパルス応答の初期部分を均一な線形配列で再構成する。
この手法により、基礎となる音響法則、すなわち波動方程式を活用でき、限られた数のデータポイントしか与えない物理的意味のある解をニューラルネットワークが生成せざるを得なくなる。
実測結果から,提案手法は,軽量なアーキテクチャを維持しつつ,最先端の深層学習・圧縮センシング技術に対して,精度の高い再現と性能を実現することを示す。
関連論文リスト
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Bayesian inference and neural estimation of acoustic wave propagation [10.980762871305279]
本稿では,物理と機械学習を組み合わせて音響信号を解析する新しい枠組みを提案する。
この課題のために, スペクトル音響特性を推定するベイズ推定法, 前方および後方の物理的損失をニューラルネットワークに装備するニューラルネットワーク物理モデル, ベンチマークとして機能する非線形最小二乗法, の3つの手法が開発された。
このフレームワークの単純さと効率性は、シミュレーションデータ上で実証的に検証されている。
論文 参考訳(メタデータ) (2023-05-28T15:14:46Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Quiver neural networks [5.076419064097734]
ニューラルネットワーク接続アーキテクチャの解析に対する一様理論的アプローチを開発する。
数学におけるquiver表現理論にインスパイアされたこのアプローチは、精巧なデータフローを捉えるためのコンパクトな方法を与える。
論文 参考訳(メタデータ) (2022-07-26T09:42:45Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Physics-informed ConvNet: Learning Physical Field from a Shallow Neural
Network [0.180476943513092]
マルチ物理システムのモデル化と予測は、避けられないデータ不足とノイズのために依然として課題である。
物理インフォームド・コンボリューション・ネットワーク(PICN)と呼ばれる新しいフレームワークは、CNNの観点から推奨されている。
PICNは物理インフォームド機械学習において、代替のニューラルネットワークソルバとなる可能性がある。
論文 参考訳(メタデータ) (2022-01-26T14:35:58Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
データ駆動手法を用いて超弾性材料をシミュレートする手法を提案する。
ニューラルネットワークは、境界条件と結果の変位場との間の非線形関係を学習するために訓練される。
その結果, 限られたデータ量でトレーニングしたネットワークアーキテクチャは, 1ミリ秒未満で変位場を予測できることがわかった。
論文 参考訳(メタデータ) (2021-09-17T12:15:47Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Physics-based polynomial neural networks for one-shot learning of
dynamical systems from one or a few samples [0.0]
本論文は, 単純な振り子と世界最大規模のX線源の双方について, 実測結果について述べる。
提案手法により, ノイズ, 制限, 部分的な観測から複雑な物理を復元することができることが実証された。
論文 参考訳(メタデータ) (2020-05-24T09:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。