論文の概要: DeepPhysics: a physics aware deep learning framework for real-time
simulation
- arxiv url: http://arxiv.org/abs/2109.09491v1
- Date: Fri, 17 Sep 2021 12:15:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-21 16:52:12.081823
- Title: DeepPhysics: a physics aware deep learning framework for real-time
simulation
- Title(参考訳): DeepPhysics: リアルタイムシミュレーションのための物理を意識したディープラーニングフレームワーク
- Authors: Alban Odot (MIMESIS), Ryadh Haferssas (MIMESIS), St\'ephane Cotin
(MIMESIS)
- Abstract要約: データ駆動手法を用いて超弾性材料をシミュレートする手法を提案する。
ニューラルネットワークは、境界条件と結果の変位場との間の非線形関係を学習するために訓練される。
その結果, 限られたデータ量でトレーニングしたネットワークアーキテクチャは, 1ミリ秒未満で変位場を予測できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time simulation of elastic structures is essential in many applications,
from computer-guided surgical interventions to interactive design in mechanical
engineering. The Finite Element Method is often used as the numerical method of
reference for solving the partial differential equations associated with these
problems. Yet, deep learning methods have recently shown that they could
represent an alternative strategy to solve physics-based problems 1,2,3. In
this paper, we propose a solution to simulate hyper-elastic materials using a
data-driven approach, where a neural network is trained to learn the non-linear
relationship between boundary conditions and the resulting displacement field.
We also introduce a method to guarantee the validity of the solution. In total,
we present three contributions: an optimized data set generation algorithm
based on modal analysis, a physics-informed loss function, and a Hybrid
Newton-Raphson algorithm. The method is applied to two benchmarks: a cantilever
beam and a propeller. The results show that our network architecture trained
with a limited amount of data can predict the displacement field in less than a
millisecond. The predictions on various geometries, topologies, mesh
resolutions, and boundary conditions are accurate to a few micrometers for
non-linear deformations of several centimeters of amplitude.
- Abstract(参考訳): コンピュータ誘導手術から機械工学におけるインタラクティブデザインに至るまで、弾性構造のリアルタイムシミュレーションは多くの応用において不可欠である。
有限要素法はしばしば、これらの問題に関連する偏微分方程式を解くための参照法として用いられる。
しかし、近年、深層学習法は物理学に基づく問題1,2,3を解決するための代替戦略を表現できることが示されている。
本稿では,境界条件と結果の変位場との間の非線形関係をニューラルネットワークで学習する,データ駆動型手法を用いて超弾性材料をシミュレートする手法を提案する。
また,ソリューションの妥当性を保証する手法を提案する。
本稿では、モーダル解析に基づく最適化されたデータセット生成アルゴリズム、物理インフォームド損失関数、ハイブリッドニュートン・ラフソンアルゴリズムの3つの貢献点について述べる。
この方法はカンチレバービームとプロペラの2つのベンチマークに適用される。
その結果, 限られたデータ量でトレーニングしたネットワークアーキテクチャは, 1ミリ秒未満で変位場を予測できることがわかった。
様々なジオメトリ、トポロジー、メッシュ分解能、境界条件の予測は、数センチの振幅の非線形変形に対して数マイクロメートルに正確である。
関連論文リスト
- Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
パラメトリゼーションを必要とせず, 種々の測地における定常ナビエ-ストークス方程式の近似解を学習する手法を提案する。
物理を意識したCNNの結果は、最先端のデータベースアプローチと比較される。
論文 参考訳(メタデータ) (2023-08-04T05:09:06Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Neural Operator: Is data all you need to model the world? An insight
into the impact of Physics Informed Machine Learning [13.050410285352605]
我々は、データ駆動アプローチが、工学や物理学の問題を解決する従来の手法を補完する方法についての洞察を提供する。
我々は,PDE演算子学習の解演算子を学習するための,新しい,高速な機械学習に基づくアプローチを強調した。
論文 参考訳(メタデータ) (2023-01-30T23:29:33Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - FEM-based Real-Time Simulations of Large Deformations with Probabilistic
Deep Learning [1.2617078020344616]
負荷下での超弾性体の応答を予測できる高効率なディープラーニングサロゲートフレームワークを提案する。
このフレームワークは、特殊な畳み込みニューラルネットワークアーキテクチャ(いわゆるU-Net)の形式を採っている。
論文 参考訳(メタデータ) (2021-11-02T20:05:22Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Meshless physics-informed deep learning method for three-dimensional
solid mechanics [0.0]
深層学習とコロケーション法は統合され、構造の変形を記述する偏微分方程式を解くために用いられる。
我々は, 線形弾性, 変形が大きい過弾性(ネオ・フーカン), 等方的およびキネマティック硬化を有するフォン・ミーゼス塑性の2種類の材料について検討した。
論文 参考訳(メタデータ) (2020-12-02T21:40:37Z) - Scalable Differentiable Physics for Learning and Control [99.4302215142673]
微分物理学は、物理的対象や環境を含む問題を学習し、制御するための強力なアプローチである。
我々は、多数のオブジェクトとその相互作用をサポートすることができる微分可能物理学のためのスケーラブルなフレームワークを開発する。
論文 参考訳(メタデータ) (2020-07-04T19:07:51Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。