Towards Mitigating more Challenging Spurious Correlations: A Benchmark & New Datasets
- URL: http://arxiv.org/abs/2306.11957v4
- Date: Sun, 13 Oct 2024 14:32:30 GMT
- Title: Towards Mitigating more Challenging Spurious Correlations: A Benchmark & New Datasets
- Authors: Siddharth Joshi, Yu Yang, Yihao Xue, Wenhan Yang, Baharan Mirzasoleiman,
- Abstract summary: Deep neural networks often exploit non-predictive features that are spuriously correlated with class labels.
Despite the growing body of recent works on remedying spurious correlations, the lack of a standardized benchmark hinders reproducible evaluation.
We present SpuCo, a python package with modular implementations of state-of-the-art solutions enabling easy and reproducible evaluation.
- Score: 43.64631697043496
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks often exploit non-predictive features that are spuriously correlated with class labels, leading to poor performance on groups of examples without such features. Despite the growing body of recent works on remedying spurious correlations, the lack of a standardized benchmark hinders reproducible evaluation and comparison of the proposed solutions. To address this, we present SpuCo, a python package with modular implementations of state-of-the-art solutions enabling easy and reproducible evaluation of current methods. Using SpuCo, we demonstrate the limitations of existing datasets and evaluation schemes in validating the learning of predictive features over spurious ones. To overcome these limitations, we propose two new vision datasets: (1) SpuCoMNIST, a synthetic dataset that enables simulating the effect of real world data properties e.g. difficulty of learning spurious feature, as well as noise in the labels and features; (2) SpuCoAnimals, a large-scale dataset curated from ImageNet that captures spurious correlations in the wild much more closely than existing datasets. These contributions highlight the shortcomings of current methods and provide a direction for future research in tackling spurious correlations. SpuCo, containing the benchmark and datasets, can be found at https://github.com/BigML-CS-UCLA/SpuCo, with detailed documentation available at https://spuco.readthedocs.io/en/latest/.
Related papers
- Happy: A Debiased Learning Framework for Continual Generalized Category Discovery [54.54153155039062]
This paper explores the underexplored task of Continual Generalized Category Discovery (C-GCD)
C-GCD aims to incrementally discover new classes from unlabeled data while maintaining the ability to recognize previously learned classes.
We introduce a debiased learning framework, namely Happy, characterized by Hardness-aware prototype sampling and soft entropy regularization.
arXiv Detail & Related papers (2024-10-09T04:18:51Z) - EBES: Easy Benchmarking for Event Sequences [17.277513178760348]
Event sequences are common data structures in various real-world domains such as healthcare, finance, and user interaction logs.
Despite advances in temporal data modeling techniques, there is no standardized benchmarks for evaluating their performance on event sequences.
We introduce EBES, a comprehensive benchmarking tool with standardized evaluation scenarios and protocols.
arXiv Detail & Related papers (2024-10-04T13:03:43Z) - The Group Robustness is in the Details: Revisiting Finetuning under Spurious Correlations [8.844894807922902]
Modern machine learning models are prone to over-reliance on spurious correlations.
In this paper, we identify surprising and nuanced behavior of finetuned models on worst-group accuracy.
Our results show more nuanced interactions of modern finetuned models with group robustness than was previously known.
arXiv Detail & Related papers (2024-07-19T00:34:03Z) - Improving Generalization of Alignment with Human Preferences through
Group Invariant Learning [56.19242260613749]
Reinforcement Learning from Human Feedback (RLHF) enables the generation of responses more aligned with human preferences.
Previous work shows that Reinforcement Learning (RL) often exploits shortcuts to attain high rewards and overlooks challenging samples.
We propose a novel approach that can learn a consistent policy via RL across various data groups or domains.
arXiv Detail & Related papers (2023-10-18T13:54:15Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls
and New Benchmarking [66.83273589348758]
Link prediction attempts to predict whether an unseen edge exists based on only a portion of edges of a graph.
A flurry of methods have been introduced in recent years that attempt to make use of graph neural networks (GNNs) for this task.
New and diverse datasets have also been created to better evaluate the effectiveness of these new models.
arXiv Detail & Related papers (2023-06-18T01:58:59Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Outlier-Robust Group Inference via Gradient Space Clustering [50.87474101594732]
Existing methods can improve the worst-group performance, but they require group annotations, which are often expensive and sometimes infeasible to obtain.
We address the problem of learning group annotations in the presence of outliers by clustering the data in the space of gradients of the model parameters.
We show that data in the gradient space has a simpler structure while preserving information about minority groups and outliers, making it suitable for standard clustering methods like DBSCAN.
arXiv Detail & Related papers (2022-10-13T06:04:43Z) - GDC- Generalized Distribution Calibration for Few-Shot Learning [5.076419064097734]
Few shot learning is an important problem in machine learning as large labelled datasets take considerable time and effort to assemble.
Most few-shot learning algorithms suffer from one of two limitations- they either require the design of sophisticated models and loss functions, thus hampering interpretability.
We propose a Generalized sampling method that learns to estimate few-shot distributions for classification as weighted random variables of all large classes.
arXiv Detail & Related papers (2022-04-11T16:22:53Z) - RIFLE: Imputation and Robust Inference from Low Order Marginals [10.082738539201804]
We develop a statistical inference framework for regression and classification in the presence of missing data without imputation.
Our framework, RIFLE, estimates low-order moments of the underlying data distribution with corresponding confidence intervals to learn a distributionally robust model.
Our experiments demonstrate that RIFLE outperforms other benchmark algorithms when the percentage of missing values is high and/or when the number of data points is relatively small.
arXiv Detail & Related papers (2021-09-01T23:17:30Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-06-20T17:34:55Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - The Surprising Performance of Simple Baselines for Misinformation
Detection [4.060731229044571]
We examine the performance of a broad set of modern transformer-based language models.
We present our framework as a baseline for creating and evaluating new methods for misinformation detection.
arXiv Detail & Related papers (2021-04-14T16:25:22Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Feature Selection for Huge Data via Minipatch Learning [0.0]
We propose Stable Minipatch Selection (STAMPS) and Adaptive STAMPS.
STAMPS are meta-algorithms that build ensembles of selection events of base feature selectors trained on tiny, (ly-adaptive) random subsets of both the observations and features of the data.
Our approaches are general and can be employed with a variety of existing feature selection strategies and machine learning techniques.
arXiv Detail & Related papers (2020-10-16T17:41:08Z) - Revisiting Data Complexity Metrics Based on Morphology for Overlap and
Imbalance: Snapshot, New Overlap Number of Balls Metrics and Singular
Problems Prospect [9.666866159867444]
This research work focuses on revisiting complexity metrics based on data morphology.
Being based on ball coverage by classes, they are named after Overlap Number of Balls.
arXiv Detail & Related papers (2020-07-15T18:21:13Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.