論文の概要: Towards quantum enhanced adversarial robustness in machine learning
- arxiv url: http://arxiv.org/abs/2306.12688v1
- Date: Thu, 22 Jun 2023 06:21:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 15:16:09.234055
- Title: Towards quantum enhanced adversarial robustness in machine learning
- Title(参考訳): 機械学習における量子強化対向ロバスト性を目指して
- Authors: Maxwell T. West, Shu-Lok Tsang, Jia S. Low, Charles D. Hill,
Christopher Leckie, Lloyd C.L. Hollenberg, Sarah M. Erfani, Muhammad Usman
- Abstract要約: 機械学習と量子コンピューティングを統合することで、精度と計算効率が向上する。
近年の研究では、敵の攻撃から守るために量子力学的現象が採用されている。
有望な早期成果にもかかわらず、実世界の堅牢なQAMLツールの構築には依然として課題がある。
- 参考スコア(独自算出の注目度): 18.663564729815615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning algorithms are powerful tools for data driven tasks such as
image classification and feature detection, however their vulnerability to
adversarial examples - input samples manipulated to fool the algorithm -
remains a serious challenge. The integration of machine learning with quantum
computing has the potential to yield tools offering not only better accuracy
and computational efficiency, but also superior robustness against adversarial
attacks. Indeed, recent work has employed quantum mechanical phenomena to
defend against adversarial attacks, spurring the rapid development of the field
of quantum adversarial machine learning (QAML) and potentially yielding a new
source of quantum advantage. Despite promising early results, there remain
challenges towards building robust real-world QAML tools. In this review we
discuss recent progress in QAML and identify key challenges. We also suggest
future research directions which could determine the route to practicality for
QAML approaches as quantum computing hardware scales up and noise levels are
reduced.
- Abstract(参考訳): 機械学習アルゴリズムは、画像分類や特徴検出などのデータ駆動タスクのための強力なツールであるが、その脆弱性は、アルゴリズムを騙すために操作された入力サンプルである。
機械学習と量子コンピューティングの統合は、精度と計算効率の向上だけでなく、敵対的攻撃に対する優れた堅牢性を提供するツールをもたらす可能性がある。
実際、近年の研究では、量子力学的現象を用いて敵攻撃を防ぎ、量子対向機械学習(QAML)の分野が急速に発展し、新たな量子優位性を生み出す可能性がある。
有望な早期成果にもかかわらず、実世界の堅牢なQAMLツールの構築には依然として課題がある。
本稿では,近年のQAMLの進歩と重要な課題について述べる。
また、量子コンピューティングハードウェアのスケールアップとノイズレベルの低減により、QAMLアプローチの実用性への道筋を決定できる将来の研究方向性を提案する。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - QML-IDS: Quantum Machine Learning Intrusion Detection System [1.2016264781280588]
本稿では量子コンピューティングと古典コンピューティングを組み合わせた新しい侵入検知システムQML-IDSを提案する。
QML-IDSはQuantum Machine Learning(QML)手法を用いてネットワークパターンを分析し、攻撃活動を検出する。
我々は,QML-IDSが攻撃検出に有効であることを示し,バイナリおよびマルチクラス分類タスクで良好に動作することを示す。
論文 参考訳(メタデータ) (2024-10-07T13:07:41Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
本研究では,量子コンピューティングと機械学習(ML)の交わりについて検討する。
小型量子デバイスにおけるデータ再ロード方式やGAN(Generative Adversarial Networks)モデルなどのハイブリッド量子古典アルゴリズムの有効性を評価する。
論文 参考訳(メタデータ) (2024-04-01T20:55:03Z) - Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK [0.3624329910445628]
本稿では,量子生成学習アプリケーションのスケーラビリティと耐雑音性について検討する。
厳密なベンチマーク手法を用いて、進捗を追跡し、QMLアルゴリズムのスケーリングにおける課題を特定する。
その結果,QGANはQCBMほど次元の呪いの影響を受けず,QCBMはノイズに耐性があることがわかった。
論文 参考訳(メタデータ) (2024-03-27T15:05:55Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - Quafu-RL: The Cloud Quantum Computers based Quantum Reinforcement
Learning [0.0]
本研究は,BAQIS Quafu量子コンピューティングクラウド上で,少なくとも136量子ビットを備えた実デバイス上で,ベンチマーク量子強化問題を実行するための第一歩である。
実験の結果,Reinforcement Learning (RL) エージェントはトレーニング段階と推論段階の両方でわずかに緩和された目標を達成することができることがわかった。
論文 参考訳(メタデータ) (2023-05-29T09:13:50Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
本稿では,QRCとQELMをモデル化するフレームワークを提案する。
我々の分析は、QELMとQRCの両方の機能と限界をより深く理解するための道を開いた。
論文 参考訳(メタデータ) (2022-10-03T09:32:28Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。