論文の概要: Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices
- arxiv url: http://arxiv.org/abs/2404.02177v1
- Date: Mon, 1 Apr 2024 20:55:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 21:38:27.821100
- Title: Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices
- Title(参考訳): コンピュータビジョンのための量子強化機械学習の探索:ノイズのある中間量子デバイスへの応用と展望
- Authors: Purnachandra Mandadapu,
- Abstract要約: 本研究では,量子コンピューティングと機械学習(ML)の交わりについて検討する。
小型量子デバイスにおけるデータ再ロード方式やGAN(Generative Adversarial Networks)モデルなどのハイブリッド量子古典アルゴリズムの有効性を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As medium-scale quantum computers progress, the application of quantum algorithms across diverse fields like simulating physical systems, chemistry, optimization, and cryptography becomes more prevalent. However, these quantum computers, known as Noisy Intermediate Scale Quantum (NISQ), are susceptible to noise, prompting the search for applications that can capitalize on quantum advantage without extensive error correction procedures. Since, Machine Learning (ML), particularly Deep Learning (DL), faces challenges due to resource-intensive training and algorithmic opacity. Therefore, this study explores the intersection of quantum computing and ML, focusing on computer vision tasks. Specifically, it evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices. Through practical implementation and testing, the study reveals comparable or superior performance of these algorithms compared to classical counterparts, highlighting the potential of leveraging quantum algorithms in ML tasks.
- Abstract(参考訳): 中規模の量子コンピュータが進むにつれて、物理系、化学、最適化、暗号といった様々な分野にまたがる量子アルゴリズムの応用が一般的になる。
しかし、これらの量子コンピュータ(NISQ)はノイズの影響を受けやすいため、広範囲の誤り訂正手順を使わずに量子優位性に乗じられるアプリケーションを探す。
それ以来、機械学習(ML)、特にディープラーニング(DL)は、リソース集約的なトレーニングとアルゴリズムの不透明さによる課題に直面している。
そこで本研究では,コンピュータビジョンタスクに着目し,量子コンピューティングとMLの交わりについて検討する。
具体的には、小規模量子デバイスにおけるデータ再ロード方式やGAN(Generative Adversarial Networks)モデルなどのハイブリッド量子古典アルゴリズムの有効性を評価する。
実践的な実装とテストを通じて、この研究は従来のアルゴリズムと比較して、これらのアルゴリズムの同等または優れた性能を明らかにし、MLタスクで量子アルゴリズムを活用する可能性を強調した。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum Visual Feature Encoding Revisited [8.839645003062456]
本稿では,量子機械学習の初期段階である量子視覚符号化戦略を再考する。
根本原因を調べた結果,既存の量子符号化設計では符号化処理後の視覚的特徴の情報保存が不十分であることが判明した。
我々は、このギャップを最小限に抑えるために、量子情報保存と呼ばれる新しい損失関数を導入し、量子機械学習アルゴリズムの性能を向上した。
論文 参考訳(メタデータ) (2024-05-30T06:15:08Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
この論文は、量子計算資源の要求を減らす2つの主要な技術を開発した。
目的は、現在の量子プロセッサでアプリケーションサイズをスケールアップすることだ。
アルゴリズムの応用の主な焦点は量子システムのシミュレーションであるが、開発したサブルーチンは最適化や機械学習の分野でさらに活用することができる。
論文 参考訳(メタデータ) (2024-03-01T19:36:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Machine learning on quantum experimental data toward solving quantum
many-body problems [0.0]
最大44量子ビットのシステムに対する古典的機械学習アルゴリズムの実装を成功例に示す。
我々は、多体物理学に関心のある問題に対するハイブリッドアプローチの適用性を拡張した。
論文 参考訳(メタデータ) (2023-10-30T10:25:59Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
量子アルゴリズムの有望な領域は量子機械学習と量子最適化である。
近年の量子技術、特に量子ソフトウェアの発展により、研究と産業のコミュニティは量子アルゴリズムの新しい応用を見つけようとしている。
論文 参考訳(メタデータ) (2021-12-22T06:19:36Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Machine Learning For Classical Data [0.0]
量子コンピューティングと教師付き機械学習アルゴリズムの交差について研究する。
特に,教師付き機械学習アルゴリズムの高速化に量子コンピュータがどの程度使えるかを検討する。
論文 参考訳(メタデータ) (2021-05-08T12:11:44Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。