論文の概要: Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK
- arxiv url: http://arxiv.org/abs/2403.18662v1
- Date: Wed, 27 Mar 2024 15:05:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:29:03.409239
- Title: Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK
- Title(参考訳): 量子生成学習のベンチマーク:quRKを用いた拡張性と耐雑音性の検討
- Authors: Florian J. Kiwit, Maximilian A. Wolf, Marwa Marso, Philipp Ross, Jeanette M. Lorenz, Carlos A. Riofrío, Andre Luckow,
- Abstract要約: 本稿では,量子生成学習アプリケーションのスケーラビリティと耐雑音性について検討する。
厳密なベンチマーク手法を用いて、進捗を追跡し、QMLアルゴリズムのスケーリングにおける課題を特定する。
その結果,QGANはQCBMほど次元の呪いの影響を受けず,QCBMはノイズに耐性があることがわかった。
- 参考スコア(独自算出の注目度): 0.3624329910445628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing promises a disruptive impact on machine learning algorithms, taking advantage of the exponentially large Hilbert space available. However, it is not clear how to scale quantum machine learning (QML) to industrial-level applications. This paper investigates the scalability and noise resilience of quantum generative learning applications. We consider the training performance in the presence of statistical noise due to finite-shot noise statistics and quantum noise due to decoherence to analyze the scalability of QML methods. We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms, and show how characterization of QML systems can be accelerated, simplified, and made reproducible when the QUARK framework is used. We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
- Abstract(参考訳): 量子コンピューティングは、指数関数的に大きなヒルベルト空間を生かして、機械学習アルゴリズムに破壊的な影響を約束する。
しかし、量子機械学習(QML)を産業レベルのアプリケーションにスケールする方法は明らかになっていない。
本稿では,量子生成学習アプリケーションのスケーラビリティと耐雑音性について検討する。
有限ショットノイズ統計と量子ノイズによる統計的ノイズの存在下でのトレーニング性能について検討し,QML法のスケーラビリティを解析するためにデコヒーレンスによるトレーニング性能について検討した。
我々は、QMLアルゴリズムのスケーリングにおける進歩の追跡と課題の特定に厳密なベンチマーク手法を採用し、QMLシステムのキャラクタリゼーションがどのように加速され、単純化され、QUIRKフレームワークを使用する場合に再現可能であるかを示す。
その結果,QGANはQCBMほど次元の呪いの影響を受けず,QCBMはノイズに対してどの程度耐性があるかがわかる。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - NAC-QFL: Noise Aware Clustered Quantum Federated Learning [9.752814421987246]
本稿では,雑音を考慮したクラスタリング型量子フェデレーション学習システムを提案する。
ノイズ緩和、量子デバイス容量の制限、高い量子通信コストに対処する。
分散QML性能を高め、通信コストを削減する。
論文 参考訳(メタデータ) (2024-06-20T12:00:17Z) - Identifying Bottlenecks of NISQ-friendly HHL algorithms [0.0]
NISQ適応反復QPEとそのHHLアルゴリズムの雑音耐性について検討する。
その結果,Qiskit readout や M Three readout package のようなノイズ低減技術は,ここでテストした小さなインスタンスにおいても,結果の回復には不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-10T14:11:27Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
我々はカーンズのSQオラクルとヴァリアントの弱い評価オラクルからインスピレーションを得ます。
評価クエリから学習するための非条件の下限を出力する,広範かつ直感的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-26T18:23:21Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Adaptive quantum error mitigation using pulse-based inverse evolutions [0.0]
本稿では,ターゲット装置の雑音レベルに適応する適応KIKというQEM手法を提案する。
この手法の実装は実験的にシンプルであり、トモグラフィ情報や機械学習の段階は含まない。
我々は、IBM量子コンピュータと数値シミュレーションを用いて、我々の研究結果を実証した。
論文 参考訳(メタデータ) (2023-03-09T02:50:53Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
本稿では,QRCとQELMをモデル化するフレームワークを提案する。
我々の分析は、QELMとQRCの両方の機能と限界をより深く理解するための道を開いた。
論文 参考訳(メタデータ) (2022-10-03T09:32:28Z) - Dynamical simulation via quantum machine learning with provable
generalization [2.061594137938085]
本研究では,QML法を用いて量子力学を短期量子ハードウェア上でシミュレートするフレームワークを開発した。
このフレームワーク内でのアルゴリズムのトレーニングデータ要求を厳格に分析する。
我々は,IBMQ-BogotaのTrotterizationの20倍の時間をシミュレーションした。
論文 参考訳(メタデータ) (2022-04-21T17:15:24Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
本稿では,QAOAの変動パラメータをノイズキャンバス方式で最適化するために,政策段階に基づく強化学習アルゴリズムが適していることを示す。
単一および多ビット系における量子状態伝達問題に対するアルゴリズムの性能解析を行う。
論文 参考訳(メタデータ) (2020-02-04T00:46:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。