DiffInfinite: Large Mask-Image Synthesis via Parallel Random Patch
Diffusion in Histopathology
- URL: http://arxiv.org/abs/2306.13384v2
- Date: Wed, 25 Oct 2023 11:58:40 GMT
- Title: DiffInfinite: Large Mask-Image Synthesis via Parallel Random Patch
Diffusion in Histopathology
- Authors: Marco Aversa, Gabriel Nobis, Miriam H\"agele, Kai Standvoss, Mihaela
Chirica, Roderick Murray-Smith, Ahmed Alaa, Lukas Ruff, Daniela Ivanova,
Wojciech Samek, Frederick Klauschen, Bruno Sanguinetti, Luis Oala
- Abstract summary: We present DiffInfinite, a hierarchical diffusion model that generates arbitrarily large histological images.
The proposed sampling method can be scaled up to any desired image size while only requiring small patches for fast training.
- Score: 10.412322654017313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present DiffInfinite, a hierarchical diffusion model that generates
arbitrarily large histological images while preserving long-range correlation
structural information. Our approach first generates synthetic segmentation
masks, subsequently used as conditions for the high-fidelity generative
diffusion process. The proposed sampling method can be scaled up to any desired
image size while only requiring small patches for fast training. Moreover, it
can be parallelized more efficiently than previous large-content generation
methods while avoiding tiling artifacts. The training leverages classifier-free
guidance to augment a small, sparsely annotated dataset with unlabelled data.
Our method alleviates unique challenges in histopathological imaging practice:
large-scale information, costly manual annotation, and protective data
handling. The biological plausibility of DiffInfinite data is evaluated in a
survey by ten experienced pathologists as well as a downstream classification
and segmentation task. Samples from the model score strongly on anti-copying
metrics which is relevant for the protection of patient data.
Related papers
- SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
We introduce the first diffusion-based augmentation method for nuclei segmentation.
The idea is to synthesize a large number of labeled images to facilitate training the segmentation model.
The experimental results show that by augmenting 10% labeled real dataset with synthetic samples, one can achieve comparable segmentation results.
arXiv Detail & Related papers (2023-10-22T06:16:16Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Synthetic Augmentation with Large-scale Unconditional Pre-training [4.162192894410251]
We propose a synthetic augmentation method called HistoDiffusion to reduce the dependency on annotated data.
HistoDiffusion can be pre-trained on large-scale unlabeled datasets and later applied to a small-scale labeled dataset for augmented training.
We evaluate our proposed method by pre-training on three histopathology datasets and testing on a histopathology dataset of colorectal cancer (CRC) excluded from the pre-training datasets.
arXiv Detail & Related papers (2023-08-08T03:34:04Z) - Domain Adaptive Multiple Instance Learning for Instance-level Prediction
of Pathological Images [45.132775668689604]
We propose a new task setting to improve the classification performance of the target dataset without increasing annotation costs.
In order to combine the supervisory information of both methods effectively, we propose a method to create pseudo-labels with high confidence.
arXiv Detail & Related papers (2023-04-07T08:31:06Z) - CellMix: A General Instance Relationship based Method for Data
Augmentation Towards Pathology Image Classification [6.9596321268519326]
In pathology image analysis, obtaining and maintaining high-quality annotated samples is an extremely labor-intensive task.
We propose the CellMix framework, which employs a novel distribution-oriented in-place shuffle approach.
Our experiments in pathology image classification tasks demonstrate state-of-the-art (SOTA) performance on 7 distinct datasets.
arXiv Detail & Related papers (2023-01-27T03:17:35Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
We propose several strategies for learning from partially overlapping labels in the context of abdominal organ segmentation.
We find that combining a semi-supervised approach with an adaptive cross entropy loss can successfully exploit heterogeneously annotated data.
arXiv Detail & Related papers (2021-07-13T09:22:24Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
We introduce a novel generative method which leverages real anatomical information to generate realistic image-label pairs of tumours.
We construct a dual-pathway generator, for the anatomical image and label, trained in a cycle-consistent setup, constrained by an independent, pretrained segmentor.
The generated images yield significant quantitative improvement compared to existing methods.
arXiv Detail & Related papers (2021-04-22T11:18:17Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - A generic ensemble based deep convolutional neural network for
semi-supervised medical image segmentation [7.141405427125369]
We propose a generic semi-supervised learning framework for image segmentation based on a deep convolutional neural network (DCNN)
Our method is able to significantly improve beyond fully supervised model learning by incorporating unlabeled data.
arXiv Detail & Related papers (2020-04-16T23:41:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.