論文の概要: Elephants and Algorithms: A Review of the Current and Future Role of AI
in Elephant Monitoring
- arxiv url: http://arxiv.org/abs/2306.13803v1
- Date: Fri, 23 Jun 2023 22:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 18:57:54.267623
- Title: Elephants and Algorithms: A Review of the Current and Future Role of AI
in Elephant Monitoring
- Title(参考訳): エレファントとアルゴリズム: エレファントモニタリングにおけるAIの現状と今後の役割
- Authors: Leandra Brickson, Fritz Vollrath, Alexander J. Titus
- Abstract要約: 人工知能(AI)と機械学習(ML)は、動物行動と保全戦略の理解を深める革命的な機会を提供する。
アフリカ保護地域の重要な種であるゾウを焦点として、我々はAIとMLが保護に果たす役割を掘り下げる。
新しいAIとML技術は、このプロセスを合理化するためのソリューションを提供する。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) and machine learning (ML) present revolutionary
opportunities to enhance our understanding of animal behavior and conservation
strategies. Using elephants, a crucial species in Africa's protected areas, as
our focal point, we delve into the role of AI and ML in their conservation.
Given the increasing amounts of data gathered from a variety of sensors like
cameras, microphones, geophones, drones, and satellites, the challenge lies in
managing and interpreting this vast data. New AI and ML techniques offer
solutions to streamline this process, helping us extract vital information that
might otherwise be overlooked. This paper focuses on the different AI-driven
monitoring methods and their potential for improving elephant conservation.
Collaborative efforts between AI experts and ecological researchers are
essential in leveraging these innovative technologies for enhanced wildlife
conservation, setting a precedent for numerous other species.
- Abstract(参考訳): 人工知能(AI)と機械学習(ML)は、動物行動と保全戦略の理解を深める革命的な機会を提供する。
アフリカ保護地域の重要な種であるゾウを焦点として、我々はAIとMLの保護における役割を掘り下げる。
カメラ、マイク、ジオフォン、ドローン、衛星など、さまざまなセンサーから収集されるデータ量の増加を考えると、この膨大なデータの管理と解釈には課題がある。
新しいaiとml技術は、このプロセスを合理化するソリューションを提供し、見過ごされる可能性のある重要な情報を抽出するのに役立ちます。
本稿では,異なるAIによるモニタリング手法とゾウ保護改善の可能性に焦点を当てる。
AIの専門家と生態研究者の協力は、これらの革新的な技術を野生生物保護の強化に活用するために不可欠である。
関連論文リスト
- Systematic Literature Review of Vision-Based Approaches to Outdoor Livestock Monitoring with Lessons from Wildlife Studies [4.665771068009825]
我々は,牛,馬,鹿,ヤギ,羊,コアラ,キリン,ゾウなどの大型地球性哺乳類に焦点をあてる。
我々は,現在の視覚に基づく手法がPLFの文脈に適用可能であること,今後の研究に期待できる方向性について詳細に論じる。
論文 参考訳(メタデータ) (2024-10-07T13:53:17Z) - Harnessing Artificial Intelligence for Wildlife Conservation [0.0937465283958018]
保護AIは、視覚スペクトルと熱赤外線カメラを使用して、動物、人間、密猟に関連する物体を検出し、分類する。
このプラットフォームは、このデータを畳み込みニューラルネットワーク(CNN)とTransformerアーキテクチャで処理し、種を監視する。
ヨーロッパ、北アメリカ、アフリカ、東南アジアの事例研究は、このプラットフォームが種の識別、生物多様性の監視、密猟防止に成功していることを強調している。
論文 参考訳(メタデータ) (2024-08-30T09:13:31Z) - A Comprehensive Review of AI-enabled Unmanned Aerial Vehicle: Trends,
Vision , and Challenges [0.6827423171182153]
この研究は、AIがナビゲーション、物体の検出と追跡、野生生物のモニタリング、精密農業の強化、救助活動の促進、監視活動の実施、環境に配慮した計算技術を用いたUAV間のコミュニケーションの確立にどのように貢献するかを検討する。
可能性を見据えながら、倫理的考慮、安全性に関する懸念、確立すべき規制フレームワーク、AIに強化されたUAVシステムの責任ある展開についても検討する。
論文 参考訳(メタデータ) (2023-10-25T04:52:16Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
表現工学の新たな領域(RepE)を特定し,特徴付ける
RepEは、神経細胞や回路ではなく、人口レベルの表現を解析の中心に置く。
これらの手法が、広範囲の安全関連問題に対してどのようにトラクションを提供するかを紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:59:07Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
本稿では、生のEOデータから使用可能なEOベースの情報への移行を通知し、支援する、重要な科学的ツールとアプローチについて、鳥の視点で説明する。
i)コンピュータビジョン, (ii) 機械学習, (iii) 高度な処理とコンピューティング, (iv) 知識ベースAI, (v) 説明可能なAIと因果推論, (vi) 物理認識モデル, (vii) ユーザ中心のアプローチ, (viii) EOにおけるML技術の大量使用に関する倫理的・社会的問題に関する議論の議論を網羅する。
論文 参考訳(メタデータ) (2023-05-15T07:47:24Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - On the Evolution of A.I. and Machine Learning: Towards a Meta-level
Measuring and Understanding Impact, Influence, and Leadership at Premier A.I.
Conferences [0.26999000177990923]
我々は、過去数十年間、AIと機械学習研究者の影響力、影響力、リーダーシップの分析を可能にする手段を提示する。
我々は,1969年に開催された第1回IJCAI(International Joint Conference on Artificial Intelligence)以降,AIと機械学習のフラッグシップカンファレンスで発表された論文について検討する。
論文 参考訳(メタデータ) (2022-05-26T03:41:12Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
機械学習は、野生生物種の理解、モニタリング能力、保存性を高めるために、この分析的な課題を満たすことができると我々は主張する。
本質的に、新しい機械学習アプローチとエコロジー分野の知識を組み合わせることで、動物生態学者は現代のセンサー技術が生み出すデータの豊富さを生かすことができる。
論文 参考訳(メタデータ) (2021-10-25T13:40:36Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。