論文の概要: A Comprehensive Review of AI-enabled Unmanned Aerial Vehicle: Trends,
Vision , and Challenges
- arxiv url: http://arxiv.org/abs/2310.16360v1
- Date: Wed, 25 Oct 2023 04:52:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 16:47:33.775204
- Title: A Comprehensive Review of AI-enabled Unmanned Aerial Vehicle: Trends,
Vision , and Challenges
- Title(参考訳): AI搭載無人航空機の概観:トレンド,ビジョン,課題
- Authors: Osim Kumar Pal, Md Sakib Hossain Shovon, M. F. Mridha and Jungpil Shin
- Abstract要約: この研究は、AIがナビゲーション、物体の検出と追跡、野生生物のモニタリング、精密農業の強化、救助活動の促進、監視活動の実施、環境に配慮した計算技術を用いたUAV間のコミュニケーションの確立にどのように貢献するかを検討する。
可能性を見据えながら、倫理的考慮、安全性に関する懸念、確立すべき規制フレームワーク、AIに強化されたUAVシステムの責任ある展開についても検討する。
- 参考スコア(独自算出の注目度): 0.6827423171182153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the combination of artificial intelligence (AI) and unmanned
aerial vehicles (UAVs) has brought about advancements in various areas. This
comprehensive analysis explores the changing landscape of AI-powered UAVs and
friendly computing in their applications. It covers emerging trends, futuristic
visions, and the inherent challenges that come with this relationship. The
study examines how AI plays a role in enabling navigation, detecting and
tracking objects, monitoring wildlife, enhancing precision agriculture,
facilitating rescue operations, conducting surveillance activities, and
establishing communication among UAVs using environmentally conscious computing
techniques. By delving into the interaction between AI and UAVs, this analysis
highlights the potential for these technologies to revolutionise industries
such as agriculture, surveillance practices, disaster management strategies,
and more. While envisioning possibilities, it also takes a look at ethical
considerations, safety concerns, regulatory frameworks to be established, and
the responsible deployment of AI-enhanced UAV systems. By consolidating
insights from research endeavours in this field, this review provides an
understanding of the evolving landscape of AI-powered UAVs while setting the
stage for further exploration in this transformative domain.
- Abstract(参考訳): 近年,人工知能(AI)と無人航空機(UAV)の組み合わせは,様々な分野で進歩を遂げている。
この包括的な分析は、AI駆動のUAVと、アプリケーションにおけるフレンドリーなコンピューティングの状況の変化を探索する。
それは、新しいトレンド、未来的なビジョン、そしてこの関係に生じる固有の課題を扱っている。
この研究は、AIがナビゲーション、物体の検出と追跡、野生生物のモニタリング、精密農業の強化、救助活動の促進、監視活動の実施、環境に配慮した計算技術を用いたUAV間のコミュニケーションの確立にどのように貢献するかを検討する。
この分析は、AIとUAVの相互作用を掘り下げることで、農業、監視プラクティス、災害管理戦略などの産業に革命をもたらす可能性があることを浮き彫りにしている。
可能性を見据えながら、倫理的考慮、安全性に関する懸念、確立すべき規制フレームワーク、AIに強化されたUAVシステムの責任ある展開についても検討する。
この分野での研究成果を集約することにより、このレビューは、AI駆動UAVの進化する展望を理解しつつ、この変革的な領域におけるさらなる探索のステージを設定します。
関連論文リスト
- Responsible AI for Earth Observation [10.380878519901998]
私たちはAIとEOの交差点を体系的に定義し、責任あるAIプラクティスに重点を置いています。
学術と産業の両面からこの探究を導く重要な要素をいくつか挙げる。
本稿は、今後の研究成果に価値ある洞察を提供するとともに、今後の可能性と新たなトレンドを探求する。
論文 参考訳(メタデータ) (2024-05-31T14:47:27Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - A comprehensive survey of research towards AI-enabled unmanned aerial
systems in pre-, active-, and post-wildfire management [6.043705525669726]
森林火災は世界でも最も破壊的な自然災害の1つであり、人命と森林の野生生物に壊滅的な被害をもたらしている。
近年、無人航空機(UAV)とディープラーニングモデルの統合によって推進される山火事における人工知能(AI)の使用は、より効果的な山火事管理を実装し、開発するための前例のない勢いを生み出している。
論文 参考訳(メタデータ) (2024-01-04T05:09:35Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
本稿では、生のEOデータから使用可能なEOベースの情報への移行を通知し、支援する、重要な科学的ツールとアプローチについて、鳥の視点で説明する。
i)コンピュータビジョン, (ii) 機械学習, (iii) 高度な処理とコンピューティング, (iv) 知識ベースAI, (v) 説明可能なAIと因果推論, (vi) 物理認識モデル, (vii) ユーザ中心のアプローチ, (viii) EOにおけるML技術の大量使用に関する倫理的・社会的問題に関する議論の議論を網羅する。
論文 参考訳(メタデータ) (2023-05-15T07:47:24Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
無人航空機(UAV)は次世代無線通信ネットワークにおいて有望な技術であると考えられている。
人工知能(AI)は近年急速に成長し、成功している。
UAVベースのネットワークにおけるAIの潜在的な応用について概観する。
論文 参考訳(メタデータ) (2020-09-24T07:11:31Z) - An Efficient UAV-based Artificial Intelligence Framework for Real-Time
Visual Tasks [33.489573797811474]
アドホックなビジュアルベースのAIアプリケーションを容易に統合できるように、マルチレイヤAI(MLAI)フレームワークを導入します。
特徴とその利点を示すために,オブジェクト検出,目標追跡,ターゲットハンドオーバのための,現代の視覚的深層学習モデルを実装し,評価した。
論文 参考訳(メタデータ) (2020-04-13T18:53:12Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
動的環境において,人工知能(AI)による無人航空機(UAV)による次世代ネットワーク支援が提案されている。
AI対応のUAV支援無線ネットワーク(UAWN)では、複数のUAVが航空基地局として使用され、ダイナミックな環境に迅速に適応することができる。
AIフレームワークの利点として、従来のUAWNのいくつかの課題が回避され、ネットワークパフォーマンスが向上し、信頼性が向上し、アジャイル適応性が向上する。
論文 参考訳(メタデータ) (2020-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。