論文の概要: Unveiling the Potential of Sentiment: Can Large Language Models Predict Chinese Stock Price Movements?
- arxiv url: http://arxiv.org/abs/2306.14222v2
- Date: Sat, 4 May 2024 13:02:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 01:16:13.275048
- Title: Unveiling the Potential of Sentiment: Can Large Language Models Predict Chinese Stock Price Movements?
- Title(参考訳): センチメントの可能性を明らかにする - 大規模言語モデルは中国の株価運動を予測することができるか?
- Authors: Haohan Zhang, Fengrui Hua, Chengjin Xu, Hao Kong, Ruiting Zuo, Jian Guo,
- Abstract要約: 本稿では,大規模言語モデルの包括的評価のための標準化された実験手法を提案する。
性能向上のためのユニークなアプローチを具現化した3つの異なるLCMを用いて,その方法論を詳述する。
これらの感情要因を用いて量的トレーディング戦略を開発し、現実的なシナリオでバックテストを実施します。
- 参考スコア(独自算出の注目度): 13.682396634686159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Large Language Models (LLMs) has spurred discussions about their potential to enhance quantitative trading strategies. LLMs excel in analyzing sentiments about listed companies from financial news, providing critical insights for trading decisions. However, the performance of LLMs in this task varies substantially due to their inherent characteristics. This paper introduces a standardized experimental procedure for comprehensive evaluations. We detail the methodology using three distinct LLMs, each embodying a unique approach to performance enhancement, applied specifically to the task of sentiment factor extraction from large volumes of Chinese news summaries. Subsequently, we develop quantitative trading strategies using these sentiment factors and conduct back-tests in realistic scenarios. Our results will offer perspectives about the performances of Large Language Models applied to extracting sentiments from Chinese news texts.
- Abstract(参考訳): LLM(Large Language Models)の急速な進歩は、量的トレーディング戦略を強化する可能性についての議論を刺激している。
LLMは上場企業に関する感情を金融ニュースから分析し、取引決定にとって重要な洞察を提供する。
しかし,本課題におけるLLMの性能は,その特性によって大きく異なる。
本稿では,包括的評価のための標準化された実験手法を提案する。
本稿では,3つの異なるLCMを用いた手法について詳述する。それぞれがパフォーマンス向上に独特なアプローチを具現化しており,中国のニュース要約を大量に引用した感情要因抽出の課題に特化している。
その後、これらの感情要因を用いて定量的な取引戦略を開発し、現実的なシナリオでバックテストを行う。
この結果から,中国語ニューステキストからの感情抽出に応用した大規模言語モデルの性能を考察する。
関連論文リスト
- TradExpert: Revolutionizing Trading with Mixture of Expert LLMs [25.243258134817054]
TradeExpertは、専門的な4つのLLMを使用して、専門家(MoE)のアプローチを組み合わせた、新しいフレームワークである。
実験の結果は、すべての取引シナリオにおいて、TradeExpertの優れたパフォーマンスを示しています。
論文 参考訳(メタデータ) (2024-10-16T20:24:16Z) - LLMFactor: Extracting Profitable Factors through Prompts for Explainable Stock Movement Prediction [5.519288891583653]
LLMFactorと呼ばれる新しいフレームワークを導入し、ストックムーブメントに影響を与える要因を特定する。
キーフレーズや感情分析に頼っていた従来の手法とは異なり、このアプローチは株式市場のダイナミクスとより直接的に関係する要因を抽出することに焦点を当てている。
当社の枠組みは,LCMに対して,包括的戦略を通じて背景知識の創出を指示し,関連ニュースから株価に影響を及ぼす潜在的な要因を識別する。
論文 参考訳(メタデータ) (2024-06-16T06:20:50Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
教師付きファインチューニング(SFT)、教師付きインストラクションチューニング(SIT)、インコンテキストラーニング(ICL)は、3つの代替であり、事実上の標準的アプローチである。
提案手法は,6つの高・低リソース言語,3つの異なるNLUタスク,多種多様な言語とドメインのセットアップを用いて,3つのアプローチを網羅的かつ体系的に比較する。
そこで本研究では,教師あり指導のチューニングが,性能とリソース要件の最良のトレードオフであることを示す。
論文 参考訳(メタデータ) (2024-03-04T10:48:13Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
説明可能なストック予測を生成するために,LLM(Large Language Models)を教えるフレームワークを提案する。
反射剤は自己推論によって過去の株価の動きを説明する方法を学ぶ一方、PPOトレーナーは最も可能性の高い説明を生成するためにモデルを訓練する。
我々のフレームワークは従来のディープラーニング法とLLM法の両方を予測精度とマシューズ相関係数で上回ることができる。
論文 参考訳(メタデータ) (2024-02-06T03:18:58Z) - Integrating Stock Features and Global Information via Large Language
Models for Enhanced Stock Return Prediction [5.762650600435391]
本稿では,大規模言語モデルと既存の定量的モデルを統合する上での課題を克服するために,2つのコンポーネントからなる新しいフレームワークを提案する。
我々はランク情報係数とリターンにおいて、特に中国A株市場における株価のみに依存したモデルと比較して、優れたパフォーマンスを示してきた。
論文 参考訳(メタデータ) (2023-10-09T11:34:18Z) - CMMLU: Measuring massive multitask language understanding in Chinese [133.70911295934746]
本稿では, 自然科学, 社会科学, 工学, 人文科学など, さまざまな分野をカバーする総合的な中国のベンチマークを紹介する。
CMMLUは、中国語の文脈における大きな言語モデルの知識と推論能力の評価におけるギャップを埋める。
論文 参考訳(メタデータ) (2023-06-15T15:49:51Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - Introspective Tips: Large Language Model for In-Context Decision Making [48.96711664648164]
我々は,大規模言語モデル(LLM)の自己最適化を促進するために,イントロスペクティブティップス(Introspective Tips)を採用している。
本手法は,少数ショットとゼロショットの両方の学習状況において,エージェントの性能を向上させる。
TextWorldにおける100以上のゲームに関する実験は、我々のアプローチの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-05-19T11:20:37Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。