論文の概要: The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling
Probabilistic Social Inferences from Linguistic Inputs
- arxiv url: http://arxiv.org/abs/2306.14325v1
- Date: Sun, 25 Jun 2023 19:38:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 15:34:57.804998
- Title: The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling
Probabilistic Social Inferences from Linguistic Inputs
- Title(参考訳): ニューロシンボリック逆計画エンジン(nipe) : 言語入力からの確率的社会推論のモデル化
- Authors: Lance Ying, Katherine M. Collins, Megan Wei, Cedegao E. Zhang, Tan
Zhi-Xuan, Adrian Weller, Joshua B. Tenenbaum, Lionel Wong
- Abstract要約: 確率的目標推論領域における言語駆動の過程と社会的推論への影響について検討する。
本稿では,エージェントシナリオの言語入力から目標推定を行うニューロシンボリックモデルを提案する。
我々のモデルは人間の反応パターンと密に一致し、LLM単独の使用よりも人間の判断をより良く予測する。
- 参考スコア(独自算出の注目度): 50.32802502923367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human beings are social creatures. We routinely reason about other agents,
and a crucial component of this social reasoning is inferring people's goals as
we learn about their actions. In many settings, we can perform intuitive but
reliable goal inference from language descriptions of agents, actions, and the
background environments. In this paper, we study this process of language
driving and influencing social reasoning in a probabilistic goal inference
domain. We propose a neuro-symbolic model that carries out goal inference from
linguistic inputs of agent scenarios. The "neuro" part is a large language
model (LLM) that translates language descriptions to code representations, and
the "symbolic" part is a Bayesian inverse planning engine. To test our model,
we design and run a human experiment on a linguistic goal inference task. Our
model closely matches human response patterns and better predicts human
judgements than using an LLM alone.
- Abstract(参考訳): 人間は社会的な生き物だ。
私たちは定期的に他のエージェントについて推論し、この社会的推論の重要な要素は、人々の行動について学ぶときに人々の目標を推測することである。
多くの設定で、エージェント、アクション、バックグラウンド環境の言語記述から直感的で信頼性の高いゴール推論を実行できます。
本稿では,確率的目標推論領域における言語駆動過程と社会的推論に影響を与える過程について検討する。
本稿では,エージェントシナリオの言語入力から目標推定を行うニューロシンボリックモデルを提案する。
ニューロ」部分は言語記述をコード表現に変換する大言語モデル(llm)であり、「シンボル」部分はベイズ逆計画エンジンである。
モデルをテストするために、私たちは言語目標推論タスクで人間実験を設計、実行します。
我々のモデルは人間の反応パターンと密に一致し、LLM単独の使用よりも人間の判断をより良く予測する。
関連論文リスト
- Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024) [16.282850445579857]
推論は人間の知性の本質的な要素であり、批判的に考える能力において基本的な役割を果たす。
自然言語処理における最近の進歩は、トランスフォーマーに基づく言語モデルの出現とともに、これらのモデルが推論能力を示す可能性を示唆している。
言語モデルにおける推論について議論が続いているが、これらのモデルが実際に推論できる程度に注目することは容易ではない。
論文 参考訳(メタデータ) (2024-10-07T02:31:47Z) - Infer Human's Intentions Before Following Natural Language Instructions [24.197496779892383]
本研究では,協調作業における自然言語学習の改善を目的とした,ソーシャル・エンボダイド推論によるフォローインストラクション(FISER)を提案する。
我々のフレームワークは、中間的推論ステップとして、人間の目標と意図を明確に推論する。
行動計画を立てる前に、社会的推論を用いて人間の意図を明示的に推測することが、純粋にエンドツーエンドのアプローチを超えることを実証的に実証する。
論文 参考訳(メタデータ) (2024-09-26T17:19:49Z) - SIFToM: Robust Spoken Instruction Following through Theory of Mind [51.326266354164716]
本稿では,認知にインスパイアされた音声指導モデルであるSIFToMを提案し,多様な音声条件下でロボットが人間の指示を実践的に追従できるようにする。
結果から,SIFToMモデルは現状の音声モデルや言語モデルよりも優れており,課題に追従する音声命令に対する人間レベルの精度に近づいていることがわかった。
論文 参考訳(メタデータ) (2024-09-17T02:36:10Z) - Large language models as linguistic simulators and cognitive models in human research [0.0]
人間のようなテキストを生成する大きな言語モデル(LLM)の台頭は、行動や認知研究における人間の参加者を置き換える可能性についての議論を巻き起こした。
心理学・社会科学における言語モデルの基本的有用性を評価するために,この代替視点を批判的に評価する。
この視点は、行動科学と認知科学における言語モデルの役割を再定義し、言語シミュレータや認知モデルとして機能し、マシンインテリジェンスと人間の認知と思考の類似点と相違点に光を当てている。
論文 参考訳(メタデータ) (2024-02-06T23:28:23Z) - Theory of Mind abilities of Large Language Models in Human-Robot
Interaction : An Illusion? [18.770522926093786]
大規模言語モデルは、様々な自然言語や生成タスクにおいて例外的な生成能力を示している。
高い利害関係とおそらく不可逆的な結果を持つToM能力の特殊応用について検討する。
本研究では,ロボットがLarge Language Model(LLM)を用いてロボットの動作を人間の観察者と同様の方法で評価する,知覚的行動認識の課題に焦点を当てる。
論文 参考訳(メタデータ) (2024-01-10T18:09:36Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Why can neural language models solve next-word prediction? A
mathematical perspective [53.807657273043446]
本研究では,英語文の実例をモデル化するための形式言語群について検討する。
我々の証明は、ニューラルネットワークモデルにおける埋め込み層と完全に接続されたコンポーネントの異なる役割を強調します。
論文 参考訳(メタデータ) (2023-06-20T10:41:23Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
我々は、数ショット$textit language coordinate$のタスクについて研究する。
リードエージェントは、言語能力の異なるエージェントの$textitpopulation$と調整する必要があります。
これは、人間のコミュニケーションの重要な構成要素であるパートナーの信念をモデル化する能力を必要とする。
論文 参考訳(メタデータ) (2021-07-12T19:26:11Z) - Intensional Artificial Intelligence: From Symbol Emergence to
Explainable and Empathetic AI [0.0]
我々は、説明可能な人工知能は、その決定の根拠を持ち、観察された行動の目的を推測し、聴衆が理解し、意図する文脈でその決定を説明することができるべきであると論じる。
理性は自然言語を必要とし、知覚状態のコーディングとデコードを行う。
言語を習得するために、エージェントは言語自体ではなく、言語が記述する世界をモデル化すべきという意味論を提案します。
論文 参考訳(メタデータ) (2021-04-23T13:13:46Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
人間エージェントが使用する社会言語は、ユーザーの応答性の向上とタスク完了に関連しています。
このモデルは、ソーシャル言語理解要素で拡張されたシーケンスからシーケンスまでのディープラーニングアーキテクチャを使用する。
人的判断と自動言語尺度の両方を用いたコンテンツ保存と社会言語レベルの評価は,エージェントがより社会的に適切な方法でユーザの問題に対処できる応答を生成できることを示している。
論文 参考訳(メタデータ) (2020-12-29T08:22:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。