Dialectical Reconciliation via Structured Argumentative Dialogues
- URL: http://arxiv.org/abs/2306.14694v3
- Date: Thu, 8 Aug 2024 16:22:29 GMT
- Title: Dialectical Reconciliation via Structured Argumentative Dialogues
- Authors: Stylianos Loukas Vasileiou, Ashwin Kumar, William Yeoh, Tran Cao Son, Francesca Toni,
- Abstract summary: Our framework enables dialectical reconciliation to address knowledge discrepancies between an explainer (AI agent) and an explainee (human user)
Our findings suggest that our framework offers a promising direction for fostering effective human-AI interactions in domains where explainability is important.
- Score: 14.584998154271512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel framework designed to extend model reconciliation approaches, commonly used in human-aware planning, for enhanced human-AI interaction. By adopting a structured argumentation-based dialogue paradigm, our framework enables dialectical reconciliation to address knowledge discrepancies between an explainer (AI agent) and an explainee (human user), where the goal is for the explainee to understand the explainer's decision. We formally describe the operational semantics of our proposed framework, providing theoretical guarantees. We then evaluate the framework's efficacy ``in the wild'' via computational and human-subject experiments. Our findings suggest that our framework offers a promising direction for fostering effective human-AI interactions in domains where explainability is important.
Related papers
- Advancing Interactive Explainable AI via Belief Change Theory [5.842480645870251]
We argue that this type of formalisation provides a framework and a methodology to develop interactive explanations.
We first define a novel, logic-based formalism to represent explanatory information shared between humans and machines.
We then consider real world scenarios for interactive XAI, with different prioritisations of new and existing knowledge, where our formalism may be instantiated.
arXiv Detail & Related papers (2024-08-13T13:11:56Z) - Approximating Human Models During Argumentation-based Dialogues [4.178382980763478]
Key challenge in Explainable AI Planning (XAIP) is model reconciliation.
We propose a novel framework that enables AI agents to learn and update a probabilistic human model.
arXiv Detail & Related papers (2024-05-28T23:22:18Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
We present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way.
Our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
arXiv Detail & Related papers (2023-10-18T20:18:05Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Speaker-Oriented Latent Structures for Dialogue-Based Relation
Extraction [10.381257436462116]
We introduce SOLS, a novel model which can explicitly induce speaker-oriented latent structures for better DiaRE.
Specifically, we learn latent structures to capture the relationships among tokens beyond the utterance boundaries.
During the learning process, our speaker-specific regularization method progressively highlights speaker-related key clues and erases the irrelevant ones.
arXiv Detail & Related papers (2021-09-11T04:24:51Z) - A Computational Model of the Institutional Analysis and Development
Framework [0.0]
This work presents the first attempt to turn the IAD framework into a computational model.
We define the Action Situation Language -- or ASL -- whose syntax is tailored to the components of the IAD framework and that we use to write descriptions of social interactions.
These models can be analyzed with the standard tools of game theory to predict which outcomes are being most incentivized, and evaluated according to their socially relevant properties.
arXiv Detail & Related papers (2021-05-27T13:53:56Z) - I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling [104.09033240889106]
We introduce the DialoguE COntradiction DEtection task (DECODE) and a new conversational dataset containing both human-human and human-bot contradictory dialogues.
We then compare a structured utterance-based approach of using pre-trained Transformer models for contradiction detection with the typical unstructured approach.
arXiv Detail & Related papers (2020-12-24T18:47:49Z) - Discourse Coherence, Reference Grounding and Goal Oriented Dialogue [15.766916122461922]
We argue for a new approach to realizing mixed-initiative human--computer referential communication.
We describe a simple dialogue system in a referential communication domain that accumulates constraints across discourse, interprets them using a learned probabilistic model, and plans clarification using reinforcement learning.
arXiv Detail & Related papers (2020-07-08T20:53:14Z) - Is this Dialogue Coherent? Learning from Dialogue Acts and Entities [82.44143808977209]
We create the Switchboard Coherence (SWBD-Coh) corpus, a dataset of human-human spoken dialogues annotated with turn coherence ratings.
Our statistical analysis of the corpus indicates how turn coherence perception is affected by patterns of distribution of entities.
We find that models combining both DA and entity information yield the best performances both for response selection and turn coherence rating.
arXiv Detail & Related papers (2020-06-17T21:02:40Z) - Dialogue-Based Relation Extraction [53.2896545819799]
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE.
We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks.
Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings.
arXiv Detail & Related papers (2020-04-17T03:51:57Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.