Advancing Interactive Explainable AI via Belief Change Theory
- URL: http://arxiv.org/abs/2408.06875v2
- Date: Wed, 14 Aug 2024 11:23:43 GMT
- Title: Advancing Interactive Explainable AI via Belief Change Theory
- Authors: Antonio Rago, Maria Vanina Martinez,
- Abstract summary: We argue that this type of formalisation provides a framework and a methodology to develop interactive explanations.
We first define a novel, logic-based formalism to represent explanatory information shared between humans and machines.
We then consider real world scenarios for interactive XAI, with different prioritisations of new and existing knowledge, where our formalism may be instantiated.
- Score: 5.842480645870251
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI models become ever more complex and intertwined in humans' daily lives, greater levels of interactivity of explainable AI (XAI) methods are needed. In this paper, we propose the use of belief change theory as a formal foundation for operators that model the incorporation of new information, i.e. user feedback in interactive XAI, to logical representations of data-driven classifiers. We argue that this type of formalisation provides a framework and a methodology to develop interactive explanations in a principled manner, providing warranted behaviour and favouring transparency and accountability of such interactions. Concretely, we first define a novel, logic-based formalism to represent explanatory information shared between humans and machines. We then consider real world scenarios for interactive XAI, with different prioritisations of new and existing knowledge, where our formalism may be instantiated. Finally, we analyse a core set of belief change postulates, discussing their suitability for our real world settings and pointing to particular challenges that may require the relaxation or reinterpretation of some of the theoretical assumptions underlying existing operators.
Related papers
- Explainable and Human-Grounded AI for Decision Support Systems: The Theory of Epistemic Quasi-Partnerships [0.0]
We argue that meeting the demands of ethical and explainable AI (XAI) is about developing AI-DSS to provide human decision-makers with three types of human-grounded explanations.
We demonstrate how current theories about what constitutes good human-grounded reasons either do not adequately explain this evidence or do not offer sound ethical advice for development.
arXiv Detail & Related papers (2024-09-23T09:14:25Z) - Approximating Human Models During Argumentation-based Dialogues [4.178382980763478]
Key challenge in Explainable AI Planning (XAIP) is model reconciliation.
We propose a novel framework that enables AI agents to learn and update a probabilistic human model.
arXiv Detail & Related papers (2024-05-28T23:22:18Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
This position paper presents a theoretical framework for enhancing explainable artificial intelligence (xAI) through emergent communication (EmCom)
We explore the novel integration of EmCom into AI systems, offering a paradigm shift from conventional associative relationships between inputs and outputs to a more nuanced, causal interpretation.
The paper discusses the theoretical underpinnings of this approach, its potential broad applications, and its alignment with the growing need for responsible and transparent AI systems.
arXiv Detail & Related papers (2024-01-29T02:28:39Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Dialectical Reconciliation via Structured Argumentative Dialogues [14.584998154271512]
Our framework enables dialectical reconciliation to address knowledge discrepancies between an explainer (AI agent) and an explainee (human user)
Our findings suggest that our framework offers a promising direction for fostering effective human-AI interactions in domains where explainability is important.
arXiv Detail & Related papers (2023-06-26T13:39:36Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
We review the state-of-the-art theory and implementations of active inference for state-estimation, control, planning and learning.
We showcase relevant experiments that illustrate its potential in terms of adaptation, generalization and robustness.
arXiv Detail & Related papers (2021-12-03T12:10:26Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.