論文の概要: Leveraging Task Structures for Improved Identifiability in Neural Network Representations
- arxiv url: http://arxiv.org/abs/2306.14861v3
- Date: Fri, 23 Aug 2024 14:26:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 20:28:29.798851
- Title: Leveraging Task Structures for Improved Identifiability in Neural Network Representations
- Title(参考訳): ニューラルネットワーク表現における識別性向上のためのタスク構造の導入
- Authors: Wenlin Chen, Julien Horwood, Juyeon Heo, José Miguel Hernández-Lobato,
- Abstract要約: 教師あり学習における識別可能性の理論を,タスクの分布にアクセスできる結果を考慮して拡張する。
一般マルチタスク回帰設定において線形識別性が達成可能であることを示す。
- 参考スコア(独自算出の注目度): 31.863998589693065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work extends the theory of identifiability in supervised learning by considering the consequences of having access to a distribution of tasks. In such cases, we show that linear identifiability is achievable in the general multi-task regression setting. Furthermore, we show that the existence of a task distribution which defines a conditional prior over latent factors reduces the equivalence class for identifiability to permutations and scaling of the true latent factors, a stronger and more useful result than linear identifiability. Crucially, when we further assume a causal structure over these tasks, our approach enables simple maximum marginal likelihood optimization, and suggests potential downstream applications to causal representation learning. Empirically, we find that this straightforward optimization procedure enables our model to outperform more general unsupervised models in recovering canonical representations for both synthetic data and real-world molecular data.
- Abstract(参考訳): この研究は、タスクの分布にアクセスできる結果を考えることにより、教師あり学習における識別可能性の理論を拡張した。
このような場合、一般マルチタスク回帰設定において線形識別性が達成可能であることを示す。
さらに, 条件付き先行要因を定義するタスク分布の存在は, 線形識別可能性よりも強く, 有用である実潜在因子の順列化とスケーリングに対する同一性クラスを減少させることを示した。
重要なことは、これらのタスクに対して因果的構造を更に仮定すると、我々のアプローチは、単純な最大辺縁確率最適化を可能にし、因果的表現学習への潜在的下流応用を提案する。
実験により, この簡単な最適化手法により, 合成データと実世界の分子データの両方に対する標準表現の復元において, より一般的な教師なしモデルよりも優れていることがわかった。
関連論文リスト
- Features are fate: a theory of transfer learning in high-dimensional regression [23.840251319669907]
対象タスクが事前学習されたモデルの特徴空間で適切に表現されている場合、転送学習はスクラッチからトレーニングに優れることを示す。
本モデルでは, 音源と目標タスクの重なり合う特徴空間が十分に強い場合, 線形転送と微調整の両方で性能が向上することを確認した。
論文 参考訳(メタデータ) (2024-10-10T17:58:26Z) - Likelihood-based Differentiable Structure Learning [38.25218464260965]
有向非巡回グラフ(DAG)の微分可能な構造学習への既存のアプローチは、強い識別可能性仮定に依存している。
一般確率下での微分可能非周期制約プログラムの挙動を解析することにより,これらの問題を説明・改善する。
論文 参考訳(メタデータ) (2024-10-08T16:08:24Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Matrix Completion-Informed Deep Unfolded Equilibrium Models for
Self-Supervised k-Space Interpolation in MRI [8.33626757808923]
正規化モデル駆動型ディープラーニング(DL)は,DLの強力な表現能力を活用する能力から注目されている。
理論的に保証され,完全サンプリングラベルに依存しない加速MRIのための自己教師型DLアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-24T07:25:06Z) - Predictive Coding beyond Correlations [59.47245250412873]
このようなアルゴリズムのうちの1つは、予測符号化と呼ばれ、因果推論タスクを実行することができるかを示す。
まず、予測符号化の推論過程における簡単な変化が、因果グラフを再利用したり再定義したりすることなく、介入を計算できることを示す。
論文 参考訳(メタデータ) (2023-06-27T13:57:16Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Self-Supervised Learning via Maximum Entropy Coding [57.56570417545023]
本稿では,表現の構造を明示的に最適化する原理的目的として,最大エントロピー符号化(MEC)を提案する。
MECは、特定のプリテキストタスクに基づいて、以前のメソッドよりもより一般化可能な表現を学ぶ。
ImageNetリニアプローブだけでなく、半教師付き分類、オブジェクト検出、インスタンスセグメンテーション、オブジェクトトラッキングなど、さまざまなダウンストリームタスクに対して一貫して最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-20T17:58:30Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
本稿では,観測データから因果表現を学習するために,仮説因果グラフに基づいて相互情報量で学習手順を規則化することを提案する。
この最適化は、因果性に着想を得た学習がサンプルの複雑さを減らし、一般化能力を向上させるという理論的保証を導出する反ファクト的損失を伴う。
論文 参考訳(メタデータ) (2022-02-17T00:38:35Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。