Geometry-Aware Approaches for Balancing Performance and Theoretical Guarantees in Linear Bandits
- URL: http://arxiv.org/abs/2306.14872v5
- Date: Sun, 18 May 2025 08:52:33 GMT
- Title: Geometry-Aware Approaches for Balancing Performance and Theoretical Guarantees in Linear Bandits
- Authors: Yuwei Luo, Mohsen Bayati,
- Abstract summary: Thompson sampling and Greedy demonstrate promising empirical performance, yet this contrasts with their pessimistic theoretical regret bounds.<n>We propose a new data-driven technique that tracks the geometric properties of the uncertainty ellipsoid around the main problem parameter.<n>This methodology enables us to formulate a data-driven frequentist regret bound, which incorporates the geometric information, for a broad class of base algorithms, including Greedy, OFUL, and Thompson sampling.
- Score: 5.847084649531299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is motivated by recent research in the $d$-dimensional stochastic linear bandit literature, which has revealed an unsettling discrepancy: algorithms like Thompson sampling and Greedy demonstrate promising empirical performance, yet this contrasts with their pessimistic theoretical regret bounds. The challenge arises from the fact that while these algorithms may perform poorly in certain problem instances, they generally excel in typical instances. To address this, we propose a new data-driven technique that tracks the geometric properties of the uncertainty ellipsoid around the main problem parameter. This methodology enables us to formulate a data-driven frequentist regret bound, which incorporates the geometric information, for a broad class of base algorithms, including Greedy, OFUL, and Thompson sampling. This result allows us to identify and ``course-correct" problem instances in which the base algorithms perform poorly. The course-corrected algorithms achieve the minimax optimal regret of order $\tilde{\mathcal{O}}(d\sqrt{T})$ for a $T$-period decision-making scenario, effectively maintaining the desirable attributes of the base algorithms, including their empirical efficacy. We present simulation results to validate our findings using synthetic and real data.
Related papers
- E-LDA: Toward Interpretable LDA Topic Models with Strong Guarantees in Logarithmic Parallel Time [2.810160553339817]
We provide the first practical algorithms with provable guarantees for the problem of inferring the topics assigned to each document in an LDA topic model.<n>This is the primary inference problem for many applications of topic models in social science, data exploration, and causal inference settings.
arXiv Detail & Related papers (2025-06-06T07:05:48Z) - Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget [55.938644481736446]
We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability.<n>We validate our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity.
arXiv Detail & Related papers (2025-06-03T02:56:26Z) - Primal-dual algorithm for contextual stochastic combinatorial optimization [1.4999444543328293]
This paper introduces a novel approach to contextual optimization, integrating operations research and machine learning to address decision-making under uncertainty.<n>Our goal is to minimize the empirical risk, which is estimated from past data on uncertain parameters and contexts.
arXiv Detail & Related papers (2025-05-07T19:37:12Z) - Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Integer Programming for Learning Directed Acyclic Graphs from Non-identifiable Gaussian Models [6.54203362045253]
We study the problem of learning directed acyclic graphs from continuous observational data.
We develop a mixed-integer programming framework for learning medium-sized problems.
Our method outperforms state-of-the-art algorithms and is robust to noise heteroscedasticity.
arXiv Detail & Related papers (2024-04-19T02:42:13Z) - Towards Practical Robustness Auditing for Linear Regression [8.9598796481325]
We investigate algorithms to find or disprove the existence of small subsets of a dataset.
We show that these methods largely outperform the state of the art and provide a useful robustness check for regression problems in a few dimensions.
We make some headway on this challenge via a spectral algorithm using ideas drawn from recent innovations in algorithmic robust statistics.
arXiv Detail & Related papers (2023-07-30T20:47:36Z) - Comprehensive Algorithm Portfolio Evaluation using Item Response Theory [0.19116784879310023]
IRT has been applied to evaluate machine learning algorithm performance on a single classification dataset.
We present a modified IRT-based framework for evaluating a portfolio of algorithms across a repository of datasets.
arXiv Detail & Related papers (2023-07-29T00:48:29Z) - High-dimensional Contextual Bandit Problem without Sparsity [8.782204980889077]
We propose an explore-then-commit (EtC) algorithm to address this problem and examine its performance.
We derive the optimal rate of the ETC algorithm in terms of $T$ and show that this rate can be achieved by balancing exploration and exploitation.
We introduce an adaptive explore-then-commit (AEtC) algorithm that adaptively finds the optimal balance.
arXiv Detail & Related papers (2023-06-19T15:29:32Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
The expected improvement (EI) algorithm is one of the most popular strategies for optimization under uncertainty.
We propose a variant of EI with a standard incumbent defined via the GP predictive mean.
We show that our algorithm converges, and achieves a cumulative regret bound of $mathcal O(gamma_TsqrtT)$.
arXiv Detail & Related papers (2022-03-15T13:17:53Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Sparse PCA: Algorithms, Adversarial Perturbations and Certificates [9.348107805982604]
We study efficient algorithms for Sparse PCA in standard statistical models.
Our goal is to achieve optimal recovery guarantees while being resilient to small perturbations.
arXiv Detail & Related papers (2020-11-12T18:58:51Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.