Emergence and stability of discrete time-crystalline phases in open
quantum systems
- URL: http://arxiv.org/abs/2306.14873v2
- Date: Thu, 31 Aug 2023 17:18:44 GMT
- Title: Emergence and stability of discrete time-crystalline phases in open
quantum systems
- Authors: Saptarshi Saha and Rangeet Bhattacharyya
- Abstract summary: We analyze discrete time-crystalline phases (DTC) in open quantum many-body systems.
We find that longer fluctuation correlation time enhances the stability of DTC.
We show and quantify how the DTC performance degrades with temperature.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here we provide a theoretical framework to analyze discrete time-crystalline
phases (DTC) in open quantum many-body systems. As a particular realization, we
choose a quantum many-body system that exhibits cascaded prethermalization .
The analysis uses a fluctuation-regulated quantum master equation. The master
equation captures the dissipative effects of the drive and dipolar coupling on
the dynamics regularized by the thermal fluctuations. We find that the
dissipators from the drive and the dipolar interactions lend stability to the
dynamics and are directly responsible for the robustness. Specifically, we find
that longer fluctuation correlation time enhances the stability of DTC. Our
results are in good agreement with the experiments. Finally, we show and
quantify how the DTC performance degrades with temperature.
Related papers
- Non-Hermitian Discrete Time Crystals [0.0]
We devise a mechanism for establishing a stable DTC with period-doubling oscillations in an open quantum system.
We find a specific class of non-reciprocal couplings in our non-Hermitian dynamics which prevents thermalization through eigenstate ordering.
arXiv Detail & Related papers (2024-10-30T05:39:18Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Self-Organized Time Crystal in Driven-Dissipative Quantum System [0.0]
Continuous time crystals (CTCs) are characterized by sustained oscillations that break the time translation symmetry.
We propose a new kind of CTC realized in a quantum contact model through self-organized bistability.
Our results serve as a solid route towards self-protected CTCs in strongly interacting open systems.
arXiv Detail & Related papers (2023-11-15T12:10:32Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Criticality and Rigidity of Dissipative Discrete Time Crystals in Solids [0.0]
We consider a dissipative quantum Ising model periodically driven by a train of $pi$-pulses and investigate dissipative discrete time crystals (DTCs) in solids.
In this model, the interaction between the spins spontaneously breaks the discrete time translation symmetry, giving rise to a dissipative DTC.
We microscopically describe the generic dissipation due to thermal contact to an equilibrium heat bath using the Bloch-Redfield equation.
arXiv Detail & Related papers (2021-10-01T18:00:35Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.