Streaming quantum gate set tomography using the extended Kalman filter
- URL: http://arxiv.org/abs/2306.15116v3
- Date: Thu, 28 Mar 2024 16:24:25 GMT
- Title: Streaming quantum gate set tomography using the extended Kalman filter
- Authors: J. P. Marceaux, Kevin Young,
- Abstract summary: We apply the extended Kalman filter to data from quantum gate set tomography to provide a streaming estimator of the both the system error model and its uncertainties.
With our method, a standard laptop can process one- and two-qubit circuit outcomes and update gate set error model at rates comparable to current experimental execution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Closed-loop control algorithms for real-time calibration of quantum processors require efficient filters that can estimate physical error parameters based on streams of measured quantum circuit outcomes. Development of such filters is complicated by the highly nonlinear relationship relationship between observed circuit outcomes and the magnitudes of elementary errors. In this work, we apply the extended Kalman filter to data from quantum gate set tomography to provide a streaming estimator of the both the system error model and its uncertainties. Our numerical examples indicate extended Kalman filtering can achieve similar performance to maximum likelihood estimation, but with dramatically lower computational cost. With our method, a standard laptop can process one- and two-qubit circuit outcomes and update gate set error model at rates comparable with current experimental execution.
Related papers
- Reducing Mid-Circuit Measurements via Probabilistic Circuits [0.13108652488669736]
Mid-circuit measurements and measurement-controlled gates are supported by an increasing number of quantum hardware platforms.
This work presents a static circuit optimization that can substitute some of these measurements with an equivalent circuit with randomized gate applications.
arXiv Detail & Related papers (2024-05-22T15:33:19Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Randomized semi-quantum matrix processing [0.0]
We present a hybrid quantum-classical framework for simulating generic matrix functions.
The method is based on randomization over the Chebyshev approximation of the target function.
We prove advantages on average depths, including quadratic speed-ups on costly parameters.
arXiv Detail & Related papers (2023-07-21T18:00:28Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - The Accuracy vs. Sampling Overhead Trade-off in Quantum Error Mitigation
Using Monte Carlo-Based Channel Inversion [84.66087478797475]
Quantum error mitigation (QEM) is a class of promising techniques for reducing the computational error of variational quantum algorithms.
We consider a practical channel inversion strategy based on Monte Carlo sampling, which introduces additional computational error.
We show that when the computational error is small compared to the dynamic range of the error-free results, it scales with the square root of the number of gates.
arXiv Detail & Related papers (2022-01-20T00:05:01Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Analytic Filter Function Derivatives for Quantum Optimal Control [0.0]
We focus on the filter function formalism, which allows the computation of gate fidelities in the presence of auto-correlated noise.
We present analytically derived filter function gradients with respect to control pulse amplitudes, and analyze the computational complexity of our results.
arXiv Detail & Related papers (2021-03-16T15:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.