論文の概要: MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for
Situated Neural Dialogue Generation
- arxiv url: http://arxiv.org/abs/2306.15253v1
- Date: Tue, 27 Jun 2023 07:24:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 14:32:21.896453
- Title: MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for
Situated Neural Dialogue Generation
- Title(参考訳): マインドディアル:神経対話生成のための理論オブマインドモデリングによる信念のダイナミクス追跡
- Authors: Shuwen Qiu, Song-Chun Zhu, Zilong Zheng
- Abstract要約: そこで我々はMindDialを提案する。MindDialは、位置自由な応答を生成できる新しい対話型フレームワークで、共通基盤を交渉できる。
我々は、3段階の信念(話者の信念、話者のリスナーの信念に対する予測、および共通の信念)を追跡できる明示的なマインドモジュールを設計する。
実験により、精神状態モデリングを用いたモデルが、共通の地盤を整列する際の人間の反応に類似できることが示されている。
- 参考スコア(独自算出の注目度): 92.28940192075433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans talk in free-form while negotiating the expressed meanings or common
ground. Despite the impressive conversational abilities of the large generative
language models, they do not consider the individual differences in contextual
understanding in a shared situated environment. In this work, we propose
MindDial, a novel conversational framework that can generate situated free-form
responses to negotiate common ground. We design an explicit mind module that
can track three-level beliefs -- the speaker's belief, the speaker's prediction
of the listener's belief, and the common belief based on the gap between the
first two. Then the speaking act classification head will decide to continue to
talk, end this turn, or take task-related action. We augment a common ground
alignment dataset MutualFriend with belief dynamics annotation, of which the
goal is to find a single mutual friend based on the free chat between two
agents. Experiments show that our model with mental state modeling can resemble
human responses when aligning common ground meanwhile mimic the natural human
conversation flow. The ablation study further validates the third-level common
belief can aggregate information of the first and second-order beliefs and
align common ground more efficiently.
- Abstract(参考訳): 人間は表現された意味や共通点を交渉しながら自由に話す。
大きな生成言語モデルの印象的な会話能力にもかかわらず、共有場所における文脈理解の個人差は考慮されていない。
本研究はMindDialを提案する。MindDialは、位置自由な応答を生成できる新しい対話型フレームワークで、共通基盤の交渉を行う。
我々は,3段階の信念を追跡可能な明示的なマインドモジュールを設計する。話者の信念,話者の聴取者の信念の予測,および最初の2つの間隙に基づく共通信念である。
そして、話す行為分類ヘッドは、話を続けるか、このターンを終了するか、タスク関連のアクションを取ることに決めます。
2つのエージェント間の無料チャットに基づいて,1つの相互友人を見つけることを目標とする,信念ダイナミクスアノテーションを用いた共通基底アライメントデータセットの相互フレンドを補強する。
実験により, 人間の自然な会話の流れを再現する上で, 心的状態モデリングを用いたモデルが人間の反応に類似することが確認された。
さらに、アブレーション研究により、第3レベルの共通信念は、第1および第2の信念の情報を集約し、共通基盤をより効率的に調整することができる。
関連論文リスト
- Dyadic Interaction Modeling for Social Behavior Generation [6.626277726145613]
ダイアディックインタラクションにおける3次元顔の動きを効果的に生成するための枠組みを提案する。
私たちのフレームワークの中心は、事前トレーニングアプローチであるDydic Interaction Modeling(DIM)です。
実験は、リスナー動作の生成において、我々のフレームワークが優れていることを示す。
論文 参考訳(メタデータ) (2024-03-14T03:21:33Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
プラグマティック推論は、実生活における会話でしばしば起こる暗黙の意味を解読する上で重要な役割を担っている。
そこで我々は,現実的な推論と会話理解の場所に関するマシンの能力のベンチマークを目的とした,新しい挑戦であるDiPlomatを紹介した。
論文 参考訳(メタデータ) (2023-06-15T10:41:23Z) - Learning to Memorize Entailment and Discourse Relations for
Persona-Consistent Dialogues [8.652711997920463]
既存の作業は、高度ネットワーク構造を持つ対話者ペルソナを意図的に学習することで、対話システムの性能を改善した。
本研究は,ペルソナ一貫性のある対話課題における係り受け関係と談話関係を記憶する学習方法を提案する。
論文 参考訳(メタデータ) (2023-01-12T08:37:00Z) - Improving a sequence-to-sequence nlp model using a reinforcement
learning policy algorithm [0.0]
対話生成の現在のニューラルネットワークモデルは、おしゃべりエージェントの回答を生成する上で非常に有望である。
しかし、彼らは発話を1度ずつ予測し、将来の結果に対する彼らの影響を無視している。
本研究は,対話の長期的成功に基づくニューラルな会話モデル構築に向けた予備的なステップを記念するものである。
論文 参考訳(メタデータ) (2022-12-28T22:46:57Z) - Can Visual Dialogue Models Do Scorekeeping? Exploring How Dialogue
Representations Incrementally Encode Shared Knowledge [17.285206913252786]
本稿では,VisDialデータセットで事前訓練されたモデルが,スコアスコアリングを適切に行うための表現を段階的に構築する理論に基づく評価手法を提案する。
我々の結論は、対話に沿った共有文とプライベートステートメントを区別する能力は、分析モデルには適度に存在しているが、必ずしも漸進的に一貫性があるとは限らないということである。
論文 参考訳(メタデータ) (2022-04-14T13:52:11Z) - Extending rational models of communication from beliefs to actions [10.169856458866088]
話し手は相手の信念に影響を与え、行動を形成する。
本研究では,純粋に情報的対象を持つ信念指向話者と,楽器的目的を持つ行動指向話者と,この2つを統合する統合話者の3つの話者モデルを開発する。
今後のリスナー行動における生産選択の基盤となる選択が,非リテラル言語の関連性や柔軟な利用をもたらすことを示す。
論文 参考訳(メタデータ) (2021-05-25T13:58:01Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
本稿では,タスク指向対話タスクにおいて,どのモデルが本質的に最も有意義な表現を担っているかを明らかにするために,事前学習された言語モデルについて検討する。
我々は、アノテートラベルを教師付き方法で固定された事前学習言語モデルの上に、分類器プローブとしてフィードフォワード層を微調整する。
論文 参考訳(メタデータ) (2020-10-26T21:34:39Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
対話履歴を効果的に活用する方法は、マルチターン対話生成において重要な問題である。
これまでの研究は通常、歴史をモデル化するために様々なニューラルネットワークアーキテクチャを使用していた。
本稿では,ランキング拡張対話生成フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-13T01:49:56Z) - Emergent Communication with World Models [80.55287578801008]
本稿では,自然言語メッセージを解釈する言語条件生成モデルのクラスであるLanguage World Modelsを紹介する。
我々は、この「観測」を永続記憶状態に組み込んで、リスニングエージェントのポリシーを条件付けします。
これにより、2次元グリッドワールド話者リスナーナビゲーションタスクにおける効果的なコミュニケーションとタスク成功が向上することを示す。
論文 参考訳(メタデータ) (2020-02-22T02:34:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。