When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2306.15546v3
- Date: Sun, 04 May 2025 11:24:55 GMT
- Title: When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
- Authors: Weiming Zhuang, Chen Chen, Jingtao Li, Chaochao Chen, Yaochu Jin, Lingjuan Lyu,
- Abstract summary: The intersection of Foundation Model (FM) and Federated Learning (FL) presents a unique opportunity to unlock new possibilities for real-world applications.<n>On the one hand, FL, as a collaborative learning paradigm, help address challenges in FM development by expanding data availability.<n>On the other hand, FM, equipped with pre-trained knowledge and exceptional performance, can serve as a robust starting point for FL.
- Score: 57.91211653592199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The intersection of Foundation Model (FM) and Federated Learning (FL) presents a unique opportunity to unlock new possibilities for real-world applications. On the one hand, FL, as a collaborative learning paradigm, help address challenges in FM development by expanding data availability, enabling computation sharing, facilitating the collaborative development of FMs, tackling continuous data update, avoiding FM monopoly, response delay and FM service down. On the other hand, FM, equipped with pre-trained knowledge and exceptional performance, can serve as a robust starting point for FL. It can also generate synthetic data to enrich data diversity and enhance overall performance of FL. Meanwhile, FM unlocks new sharing paradigm and multi-task and multi-modality capabilities for FL. By examining the interplay between FL and FM, this paper presents the motivations, challenges, and future directions of empowering FL with FM and empowering FM with FL. We hope that this work provides a good foundation to inspire future research efforts to drive advancements in both fields.
Related papers
- Ten Challenging Problems in Federated Foundation Models [55.343738234307544]
Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning.
This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency.
arXiv Detail & Related papers (2025-02-14T04:01:15Z) - Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
This paper surveys Federated learning for LLMs (FedLLM), highlighting recent advances and future directions.
We focus on two key aspects: fine-tuning and prompt learning in a federated setting, discussing existing work and associated research challenges.
arXiv Detail & Related papers (2024-09-24T04:14:33Z) - Synergizing Foundation Models and Federated Learning: A Survey [23.416321895575507]
This paper discusses the potentials and challenges of synergizing Federated Learning (FL) and Foundation Models (FM)
FL is a collaborative learning paradigm that breaks the barrier of data availability from different participants.
It provides a promising solution to customize and adapt FMs to a wide range of domain-specific tasks using distributed datasets whilst preserving privacy.
arXiv Detail & Related papers (2024-06-18T17:58:09Z) - Advances and Open Challenges in Federated Foundation Models [34.37509703688661]
The integration of Foundation Models (FMs) with Federated Learning (FL) presents a transformative paradigm in Artificial Intelligence (AI)
This paper provides a comprehensive survey of the emerging field of Federated Foundation Models (FedFM)
arXiv Detail & Related papers (2024-04-23T09:44:58Z) - FedPFT: Federated Proxy Fine-Tuning of Foundation Models [55.58899993272904]
Adapting Foundation Models (FMs) for downstream tasks through Federated Learning (FL) emerges as a promising strategy for protecting data privacy and valuable FMs.
Existing methods fine-tune FM by allocating sub-FM to clients in FL, leading to suboptimal performance due to insufficient tuning and inevitable error accumulations of gradients.
We propose Federated Proxy Fine-Tuning (FedPFT), a novel method enhancing FMs adaptation in downstream tasks through FL by two key modules.
arXiv Detail & Related papers (2024-04-17T16:30:06Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - Grounding Foundation Models through Federated Transfer Learning: A
General Framework [20.341440265217496]
Foundation Models (FMs) such as GPT-4 have achieved remarkable success in various natural language processing and computer vision tasks.
Grounding FMs by adapting them to domain-specific tasks or augmenting them with domain-specific knowledge enables us to exploit the full potential of FMs.
In recent years, the need for grounding FMs leveraging Federated Transfer Learning (FTL) has arisen strongly in both academia and industry.
Motivated by the strong growth in FTL-FM research and the potential impact of FTL-FM on industrial applications, we propose an FTL-FM framework that formulates problems of
arXiv Detail & Related papers (2023-11-29T08:21:42Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
Foundation models (FMs) are general-purpose artificial intelligence (AI) models that have recently enabled multiple brand-new generative AI applications.
Currently, the exploration of the interplay between FMs and federated learning (FL) is still in its nascent stage.
This article explores the extent to which FMs are suitable for FL over wireless networks, including a broad overview of research challenges and opportunities.
arXiv Detail & Related papers (2023-10-06T04:13:10Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Federated Foundation Models: Privacy-Preserving and Collaborative Learning for Large Models [8.184714897613166]
We propose the Federated Foundation Models (FFMs) paradigm, which combines the benefits of FMs and Federated Learning (FL)
We discuss the potential benefits and challenges of integrating FL into the lifespan of FMs, covering pre-training, fine-tuning, and application.
We explore the possibility of continual/lifelong learning in FFMs, as increased computational power at the edge may unlock the potential for optimizing FMs using newly generated private data close to the data source.
arXiv Detail & Related papers (2023-05-19T03:51:59Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - FederatedScope: A Comprehensive and Flexible Federated Learning Platform
via Message Passing [63.87056362712879]
We propose a novel and comprehensive federated learning platform, named FederatedScope, which is based on a message-oriented framework.
Compared to the procedural framework, the proposed message-oriented framework is more flexible to express heterogeneous message exchange.
We conduct a series of experiments on the provided easy-to-use and comprehensive FL benchmarks to validate the correctness and efficiency of FederatedScope.
arXiv Detail & Related papers (2022-04-11T11:24:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.