論文の概要: Evaluating ChatGPT's Decimal Skills and Feedback Generation in a Digital
Learning Game
- arxiv url: http://arxiv.org/abs/2306.16639v1
- Date: Thu, 29 Jun 2023 02:28:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 15:07:56.741114
- Title: Evaluating ChatGPT's Decimal Skills and Feedback Generation in a Digital
Learning Game
- Title(参考訳): デジタル学習ゲームにおけるChatGPTの十進スキルとフィードバック生成の評価
- Authors: Huy A. Nguyen, Hayden Stec, Xinying Hou, Sarah Di, Bruce M. McLaren
- Abstract要約: ChatGPTは概念的問題によく対応できるが、十進的な位置値と数列問題に苦慮している。
学生の回答の75%の正しさを正確に評価し,全般的に高品質なフィードバックが得られた。
- 参考スコア(独自算出の注目度): 0.6999740786886535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While open-ended self-explanations have been shown to promote robust learning
in multiple studies, they pose significant challenges to automated grading and
feedback in technology-enhanced learning, due to the unconstrained nature of
the students' input. Our work investigates whether recent advances in Large
Language Models, and in particular ChatGPT, can address this issue. Using
decimal exercises and student data from a prior study of the learning game
Decimal Point, with more than 5,000 open-ended self-explanation responses, we
investigate ChatGPT's capability in (1) solving the in-game exercises, (2)
determining the correctness of students' answers, and (3) providing meaningful
feedback to incorrect answers. Our results showed that ChatGPT can respond well
to conceptual questions, but struggled with decimal place values and number
line problems. In addition, it was able to accurately assess the correctness of
75% of the students' answers and generated generally high-quality feedback,
similar to human instructors. We conclude with a discussion of ChatGPT's
strengths and weaknesses and suggest several venues for extending its use cases
in digital teaching and learning.
- Abstract(参考訳): オープン・エンド・セルフ・エクスラレーションは、複数の研究において堅牢な学習を促進することが示されているが、学生の入力の制約のない性質のため、技術強化学習における自動学習とフィードバックに重大な課題が生じる。
本稿では,近年の大規模言語モデル,特にChatGPTがこの問題に対処できるかどうかを検討する。
学習ゲーム「十進点」の先行研究から得られた十進演習と学生データを用いて, 5,000以上のオープンエンド自己説明応答を有するチャットgptのゲーム内エクササイズ解決能力, (2) 答えの正しさの決定, 3) 誤答に対する有意義なフィードバックについて検討した。
その結果、chatgptは概念的な質問にうまく答えることができたが、十進数と数列の問題に苦しんだ。
さらに,学生の回答の75%の正しさを正確に評価し,人間のインストラクターと同様,全般的に高品質なフィードバックが得られた。
本稿では,ChatGPTの強みと弱みについて論じ,デジタル教育と学習における使用事例を拡大するためのいくつかの場を提案する。
関連論文リスト
- ChatGPT in Research and Education: Exploring Benefits and Threats [1.9466452723529557]
ChatGPTはOpenAIが開発した強力な言語モデルである。
パーソナライズされたフィードバックを提供し、アクセシビリティを高め、対話的な会話を可能にし、授業の準備と評価を支援し、複雑な科目を教えるための新しい方法を導入する。
ChatGPTは従来の教育や研究システムにも挑戦している。
これらの課題には、オンライン試験の不正行為のリスク、学術的完全性を損なう可能性のある人間のようなテキストの生成、AIによって生成された情報の信頼性を評価することの難しさなどが含まれる。
論文 参考訳(メタデータ) (2024-11-05T05:29:00Z) - Unreflected Acceptance -- Investigating the Negative Consequences of
ChatGPT-Assisted Problem Solving in Physics Education [4.014729339820806]
大規模言語モデル(LLM)が、教育などの日常生活のセンシティブな領域に与える影響は、いまだ不明である。
本研究は,高次物理学教育に焦点をあて,問題解決戦略を検討する。
論文 参考訳(メタデータ) (2023-08-21T16:14:34Z) - Transformative Effects of ChatGPT on Modern Education: Emerging Era of
AI Chatbots [36.760677949631514]
ChatGPTは、大量のデータの分析に基づいて、一貫性と有用な応答を提供するためにリリースされた。
予備評価の結果,ChatGPTは財務,コーディング,数学など各分野において異なる性能を示した。
不正確なデータや偽データを生成する可能性など、その使用には明らかな欠点がある。
ChatGPTを教育のツールとして使用すれば、学術的規制と評価のプラクティスを更新する必要がある。
論文 参考訳(メタデータ) (2023-05-25T17:35:57Z) - Can ChatGPT Pass An Introductory Level Functional Language Programming
Course? [2.3456295046913405]
本稿では,ChatGPTが導入レベルの関数型言語プログラミングコースでどの程度うまく機能するかを検討することを目的とする。
総合的な評価は、ChatGPTが学生とインストラクターの両方に与える影響についての貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-04-29T20:30:32Z) - ChatGPT in the Classroom: An Analysis of Its Strengths and Weaknesses
for Solving Undergraduate Computer Science Questions [5.962828109329824]
ChatGPTはOpenAIが開発したAI言語モデルである。
学生がChatGPTを活用すれば、家庭での課題や試験を完了し、真に知識を得ることなく良い成績を得られるのではないか、という懸念がある。
論文 参考訳(メタデータ) (2023-04-28T17:26:32Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models [49.52083248451775]
大規模言語モデル(LLM)はNLPに大きな進歩をもたらした。
特にChatGPTは,広く利用されており,アクセスしやすいLLMである。
我々は、ChatGPTの常識能力を評価するために、11のデータセットで一連の実験を行った。
論文 参考訳(メタデータ) (2023-03-29T03:05:43Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
OpenAIが開発したChatGPTは、大量のデータを使って訓練され、人間の会話をシミュレートしている。
それは、広範囲の人間の問い合わせに効果的に答える能力のために、大きな注目を集めている。
しかし、ChatGPTの失敗の包括的分析は欠落しており、これが本研究の焦点となっている。
論文 参考訳(メタデータ) (2023-02-06T04:21:59Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。