NNQS-Transformer: an Efficient and Scalable Neural Network Quantum
States Approach for Ab initio Quantum Chemistry
- URL: http://arxiv.org/abs/2306.16705v3
- Date: Wed, 1 Nov 2023 16:01:20 GMT
- Title: NNQS-Transformer: an Efficient and Scalable Neural Network Quantum
States Approach for Ab initio Quantum Chemistry
- Authors: Yangjun Wu, Chu Guo, Yi Fan, Pengyu Zhou, Honghui Shang
- Abstract summary: We develop a high-performance NNQS method for electronic structure calculations.
The major innovations include: (1) A transformer based architecture as the quantum wave function ansatz; (2) A data-centric parallelization scheme for the variational Monte Carlo (VMC) algorithm which preserves data locality and well adapts for different computing architectures; (3) A parallel batch sampling strategy which reduces the sampling cost and achieves good load balance; (4) A parallel local energy evaluation scheme which is both memory and computationally efficient; (5) Study of real chemical systems demonstrates both the superior accuracy of our method compared to state-of-the-art and the strong and
- Score: 6.445053535755014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network quantum state (NNQS) has emerged as a promising candidate for
quantum many-body problems, but its practical applications are often hindered
by the high cost of sampling and local energy calculation. We develop a
high-performance NNQS method for \textit{ab initio} electronic structure
calculations. The major innovations include: (1) A transformer based
architecture as the quantum wave function ansatz; (2) A data-centric
parallelization scheme for the variational Monte Carlo (VMC) algorithm which
preserves data locality and well adapts for different computing architectures;
(3) A parallel batch sampling strategy which reduces the sampling cost and
achieves good load balance; (4) A parallel local energy evaluation scheme which
is both memory and computationally efficient; (5) Study of real chemical
systems demonstrates both the superior accuracy of our method compared to
state-of-the-art and the strong and weak scalability for large molecular
systems with up to $120$ spin orbitals.
Related papers
- Concurrent VQE for Simulating Excited States of the Schwinger Model [0.0]
This work explores the application of the concurrent variational quantum eigensolver (cVQE) for computing excited states of the Schwinger model.
We show how to efficiently obtain the lowest two, four, and eight eigenstates with one, two, and three ancillary qubits for both vanishing and non-vanishing background electric field cases.
arXiv Detail & Related papers (2024-07-22T13:42:02Z) - Hardware-efficient variational quantum algorithm in trapped-ion quantum computer [0.0]
We study a hardware-efficient variational quantum algorithm ansatz tailored for the trapped-ion quantum simulator, HEA-TI.
We leverage programmable single-qubit rotations and global spin-spin interactions among all ions, reducing the dependence on resource-intensive two-qubit gates in conventional gate-based methods.
arXiv Detail & Related papers (2024-07-03T14:02:20Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Scalable neural quantum states architecture for quantum chemistry [5.603379389073144]
Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems.
We introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for ab-initio quantum chemistry applications.
arXiv Detail & Related papers (2022-08-11T04:40:02Z) - Reconstructing complex states of a 20-qubit quantum simulator [0.6646556786265893]
We demonstrate an efficient method for reconstruction of significantly entangled multi-qubit quantum states.
We observe superior state reconstruction quality and faster convergence compared to the methods based on neural network quantum state representations.
Our results pave the way towards efficient experimental characterization of complex states produced by the quench dynamics of many-body quantum systems.
arXiv Detail & Related papers (2022-08-09T15:52:20Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.