論文の概要: SaaFormer: Spectral-spatial Axial Aggregation Transformer for
Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2306.16759v2
- Date: Tue, 4 Jul 2023 05:51:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 19:55:13.434988
- Title: SaaFormer: Spectral-spatial Axial Aggregation Transformer for
Hyperspectral Image Classification
- Title(参考訳): saaformer : 超スペクトル画像分類のためのスペクトル-空間アキシャルアグリゲーショントランス
- Authors: Enzhe Zhao, Zhichang Guo, Yao Li, Dazhi Zhang
- Abstract要約: 地球の観測衛星や航空機から撮影したハイパースペクトル画像(HSI)は、農業、環境モニタリング、鉱業などの分野でますます重要になっている。
利用可能なハイパースペクトルデータセットが限られているため、ピクセル単位のランダムサンプリングは、最も一般的に使われているトレーニング-テストデータセット分割アプローチである。
データ漏洩の可能性を最小限に抑えるブロックワイズサンプリング法を提案する。
- 参考スコア(独自算出の注目度): 2.4723464787484812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral images (HSI) captured from earth observing satellites and
aircraft is becoming increasingly important for applications in agriculture,
environmental monitoring, mining, etc. Due to the limited available
hyperspectral datasets, the pixel-wise random sampling is the most commonly
used training-test dataset partition approach, which has significant overlap
between samples in training and test datasets. Furthermore, our experimental
observations indicates that regions with larger overlap often exhibit higher
classification accuracy. Consequently, the pixel-wise random sampling approach
poses a risk of data leakage. Thus, we propose a block-wise sampling method to
minimize the potential for data leakage. Our experimental findings also confirm
the presence of data leakage in models such as 2DCNN. Further, We propose a
spectral-spatial axial aggregation transformer model, namely SaaFormer, to
address the challenges associated with hyperspectral image classifier that
considers HSI as long sequential three-dimensional images. The model comprises
two primary components: axial aggregation attention and multi-level
spectral-spatial extraction. The axial aggregation attention mechanism
effectively exploits the continuity and correlation among spectral bands at
each pixel position in hyperspectral images, while aggregating spatial
dimension features. This enables SaaFormer to maintain high precision even
under block-wise sampling. The multi-level spectral-spatial extraction
structure is designed to capture the sensitivity of different material
components to specific spectral bands, allowing the model to focus on a broader
range of spectral details. The results on six publicly available datasets
demonstrate that our model exhibits comparable performance when using random
sampling, while significantly outperforming other methods when employing
block-wise sampling partition.
- Abstract(参考訳): 地球の観測衛星や航空機から撮影したハイパースペクトル画像(HSI)は、農業、環境モニタリング、鉱業などの分野でますます重要になっている。
利用可能なハイパースペクトルデータセットが限られているため、pixel-wise random samplingは最も一般的に使用されるトレーニング-テストデータセット分割アプローチであり、トレーニングとテストデータセットのサンプル間にかなりの重複がある。
さらに,より重なりが強い領域は分類精度が高いことが実験的に示唆された。
したがって、画素単位のランダムサンプリングアプローチは、データ漏洩のリスクをもたらす。
そこで本研究では,データ漏洩の可能性を最小限に抑えるブロックワイズサンプリング手法を提案する。
また,2dcnnなどのモデルにおけるデータ漏洩の存在も実験的に確認した。
さらに,HSIを長周期3次元画像とみなす超スペクトル画像分類器の課題に対処するため,スペクトル空間軸アグリゲーショントランスフォーマモデル,すなわちSaaFormerを提案する。
このモデルは軸集約注意と多値スペクトル空間抽出の2つの主成分からなる。
この軸集約注意機構は、空間的次元特徴を集約しながら、ハイパースペクトル画像の各画素位置におけるスペクトル帯域間の連続性と相関を効果的に活用する。
これにより、SaaFormerはブロックワイドサンプリングでも高い精度を維持することができる。
多層スペクトル空間抽出構造は、異なる物質成分の特定のスペクトル帯域に対する感度を捉え、より広範囲のスペクトル詳細に集中できるように設計されている。
6つの公開データセットの結果から,本モデルではランダムサンプリングでは同等の性能を示し,ブロックワイドサンプリングパーティションでは他の手法よりも優れていた。
関連論文リスト
- Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
S2ADetは、高スペクトル画像に固有の豊富なスペクトル情報と空間補完情報を利用する物体検出器である。
S2ADetは既存の最先端メソッドを超え、堅牢で信頼性の高い結果を達成する。
論文 参考訳(メタデータ) (2023-06-14T09:01:50Z) - HyperPCA: a Powerful Tool to Extract Elemental Maps from Noisy Data
Obtained in LIBS Mapping of Materials [7.648784748888189]
本稿では,データのスパース表現に基づくハイパースペクトル画像解析ツールHyperPCAを紹介する。
本手法は, 得られた情報量と品質の両面での優位性を示し, 解析面の物理化学的特性の改善を図っている。
論文 参考訳(メタデータ) (2021-11-30T07:52:44Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
高分解能(HR)ハイパースペクトル顔画像は、制御されていない条件下での顔関連コンピュータビジョンタスクにおいて重要な役割を果たす。
本稿では,ハイパースペクトル顔画像への深層学習手法の適用方法について検討する。
限られたトレーニングサンプルを用いたHFSRのためのスペクトル分割集約ネットワーク(SSANet)を提案する。
論文 参考訳(メタデータ) (2021-08-31T02:13:00Z) - Hyperspectral Band Selection for Multispectral Image Classification with
Convolutional Networks [0.0]
ハイパースペクトル画像から波長の減少したセットを選択するための新しいバンド選択法を提案する。
本手法により,マルチスペクトルセンサの設計に適した結果が得られることを示す。
論文 参考訳(メタデータ) (2021-06-01T17:24:35Z) - Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
Frequency Domain [88.7339322596758]
本論文では,空間画像と位相スペクトルを組み合わせ,顔の偽造のアップサンプリング成果をキャプチャするSPSL(Spatial-Phase Shallow Learning)法を提案する。
SPSLは、クロスデータセット評価における最先端性能とマルチクラス分類を実現し、単一データセット評価において同等の結果を得ることができる。
論文 参考訳(メタデータ) (2021-03-02T16:45:08Z) - Fusion of Dual Spatial Information for Hyperspectral Image
Classification [26.304992631350114]
双対空間情報の融合を利用した新しいハイパースペクトル画像分類フレームワークを提案する。
異なるシーンの3つのデータセットで行った実験は、提案手法が他の最先端の分類手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2020-10-23T12:20:18Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z) - Hyperspectral Image Classification Based on Sparse Modeling of Spectral
Blocks [6.99674326582747]
ハイパースペクトル画像分類のためのスパースモデリングフレームワークを提案する。
提案手法により,高スペクトル画像の頑健なスパースモデルが実現され,分類精度が向上する。
論文 参考訳(メタデータ) (2020-05-17T08:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。