論文の概要: Variational preparation of entangled states on quantum computers
- arxiv url: http://arxiv.org/abs/2306.17422v1
- Date: Fri, 30 Jun 2023 06:29:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-03 13:22:29.605066
- Title: Variational preparation of entangled states on quantum computers
- Title(参考訳): 量子コンピュータにおける絡み合った状態の変分準備
- Authors: Vu Tuan Hai and Nguyen Tan Viet and Le Bin Ho
- Abstract要約: 量子コンピュータ上での絡み合った量子状態を作成するための変分法を提案する。
性能向上のために,様々な勾配に基づく最適化手法を用いる。
量子状態生成の効率を最大化するための変分アルゴリズムの有効性を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a variational approach for preparing entangled quantum states on
quantum computers. The methodology involves training a unitary operation to
match with a target unitary using the Fubini-Study distance as a cost function.
We employ various gradient-based optimization techniques to enhance
performance, including Adam and quantum natural gradient. Our investigation
showcases the versatility of different ansatzes featuring a hypergraph
structure, enabling the preparation of diverse entanglement target states such
as GHZ, W, and absolutely maximally entangled states. Remarkably, the circuit
depth scales efficiently with the number of layers and does not depend on the
number of qubits. Moreover, we explore the impacts of barren plateaus, readout
noise, and error mitigation techniques on the proposed approach. Through our
analysis, we demonstrate the effectiveness of the variational algorithm in
maximizing the efficiency of quantum state preparation, leveraging low-depth
quantum circuits.
- Abstract(参考訳): 量子コンピュータ上で絡み合った量子状態を生成するための変分的手法を提案する。
この手法は、Fubini-Study 距離をコスト関数として利用して、目標ユニタリと整合するユニタリ演算を訓練することを含む。
我々はadamやquantum natural gradientなど,様々な勾配に基づく最適化手法を用いて性能を向上させる。
本研究は,GHZ,W,および絶対最大絡み合い状態などの多彩な絡み合い状態の調製を可能にするため,ハイパーグラフ構造を特徴とする異なるアンサーゼの汎用性を示す。
興味深いことに、回路深度は層数とともに効率的にスケールし、キュービット数に依存しない。
さらに,提案手法における不毛高原,読み出し雑音,誤差緩和手法の影響について検討する。
本分析により,低深度量子回路を用いた量子状態生成の効率を最大化するための変分アルゴリズムの有効性を示す。
関連論文リスト
- Compact Multi-Threshold Quantum Information Driven Ansatz For Strongly Interactive Lattice Spin Models [0.0]
近似量子相互情報(QMI)に基づくアンザッツ建築の体系的手順を提案する。
提案手法は,QMI値に基づいて各層の量子ビット対が選択される層状アンサッツを生成し,より効率的な状態生成と最適化ルーチンを実現する。
その結果,Multi-QIDA法は高い精度を維持しながら計算複雑性を低減し,格子スピンモデルにおける量子シミュレーションに有望なツールであることがわかった。
論文 参考訳(メタデータ) (2024-08-05T17:07:08Z) - Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
量子最適化と古典的機械学習を組み合わせたハイブリッドアルゴリズムを提案する。
従来の位相遷移の同定にはLASSO、トポロジカル遷移にはTransformerモデルを用いる。
我々のプロトコルは効率と精度を大幅に向上させ、量子コンピューティングと機械学習の統合における新たな道を開く。
論文 参考訳(メタデータ) (2024-05-14T09:01:41Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Universal compilation for quantum state preparation and tomography [0.0]
低深さ量子回路における量子状態の準備とトモグラフィのための普遍的なコンパイルに基づく変分アルゴリズムを提案する。
様々なユニタリトポロジの性能と、高い効率を得るために異なるユニタリのトレーニング性を評価する。
論文 参考訳(メタデータ) (2022-04-25T13:10:33Z) - Gradient Ascent Pulse Engineering with Feedback [0.0]
本稿では,モデルなし強化学習の概念を取り入れたフィードバック-GRAPEを提案する。
本手法は,ノイズの存在下での状態調整と安定化のための解釈可能なフィードバック戦略を導出する。
論文 参考訳(メタデータ) (2022-03-08T18:46:09Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
変分量子古典ハイブリッドアルゴリズムは、近い将来に量子コンピュータの実用的な問題を解くための有望な戦略と見なされている。
本稿では,ベイズ空間における有望な領域を特定するために勾配を用いた高速・スローアルゴリズムを提案する。
本研究は, 量子化学, 最適化, 量子シミュレーション問題における変分量子アルゴリズムの応用に近づいたものである。
論文 参考訳(メタデータ) (2022-03-04T17:48:57Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。