論文の概要: Exploring the Advances in Identifying Useful Code Review Comments
- arxiv url: http://arxiv.org/abs/2307.00692v2
- Date: Thu, 6 Jul 2023 16:10:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 18:36:25.093764
- Title: Exploring the Advances in Identifying Useful Code Review Comments
- Title(参考訳): 便利なコードレビューコメントの特定の進歩を探る
- Authors: Sharif Ahmed and Nasir U. Eisty
- Abstract要約: 本稿では,コードレビューコメントの有用性に関する研究の進化を反映する。
コードレビューコメントの有用性を定義し、データセットのマイニングとアノテーションを定義し、開発者の認識を調査し、異なる側面から要因を分析し、機械学習分類器を使用してコードレビューコメントの有用性を自動的に予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective peer code review in collaborative software development necessitates
useful reviewer comments and supportive automated tools. Code review comments
are a central component of the Modern Code Review process in the industry and
open-source development. Therefore, it is important to ensure these comments
serve their purposes. This paper reflects the evolution of research on the
usefulness of code review comments. It examines papers that define the
usefulness of code review comments, mine and annotate datasets, study
developers' perceptions, analyze factors from different aspects, and use
machine learning classifiers to automatically predict the usefulness of code
review comments. Finally, it discusses the open problems and challenges in
recognizing useful code review comments for future research.
- Abstract(参考訳): 協調ソフトウェア開発における効果的な相互コードレビューは、有用なレビュアーコメントとサポート的な自動化ツールを必要とする。
コードレビューのコメントは、業界とオープンソース開発におけるModern Code Reviewプロセスの中心的なコンポーネントである。
したがって、これらのコメントがその目的を達成することが重要である。
本稿では,コードレビューコメントの有用性に関する研究の進化を反映する。
コードレビューコメントの有用性を定義した論文、データセットのマイニングとアノテート、開発者の知覚の研究、さまざまな側面の要因の分析、機械学習分類器を使用してコードレビューコメントの有用性を自動的に予測する。
最後に、将来の研究で有用なコードレビューコメントを認識する際のオープンな問題と課題について論じる。
関連論文リスト
- Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
GitHub上のJavaオープンソースプロジェクトからの2,401のコードレビューコメントを分析した。
改善提案の83.9%が承認され、統合され、1%未満が後に復活した。
論文 参考訳(メタデータ) (2024-10-29T12:21:23Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - Towards debiasing code review support [1.188383832081829]
本稿では,コードレビュー中の認知バイアスによる有害症例について検討する。
特に,確認バイアスと判定疲労をカバーするプロトタイプを設計する。
既存のコードレビューツールで実装できるテクニックがあることを示します。
論文 参考訳(メタデータ) (2024-07-01T15:58:14Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
本稿では, MANGO (comMents As Natural loGic pivOts) を提案する。
その結果、MANGOは強いベースラインに基づいてコードパス率を大幅に改善することがわかった。
論理的なコメントの復号化戦略の堅牢性は、考えの連鎖よりも顕著に高い。
論文 参考訳(メタデータ) (2024-04-11T08:30:46Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Demystifying Code Snippets in Code Reviews: A Study of the OpenStack and Qt Communities and A Practitioner Survey [6.091233191627442]
コードレビューのコードスニペットに関する情報と知識をマイニングするために、混合メソッドの研究を行います。
調査の結果は、レビュー担当者が開発者がコードレビューに必要な特定の情報を満たすために、適切なシナリオでコードスニペットを提供することができることを強調している。
論文 参考訳(メタデータ) (2023-07-26T17:49:19Z) - What Makes a Code Review Useful to OpenDev Developers? An Empirical
Investigation [4.061135251278187]
コードレビューの有効性が少し改善されても、ソフトウェア開発組織にとってかなりの節約が得られます。
本研究の目的は,コードレビューコメントをOSS開発者に有用なものにする方法を,より精細に理解することである。
論文 参考訳(メタデータ) (2023-02-22T22:48:27Z) - Predicting Code Review Completion Time in Modern Code Review [12.696276129130332]
Modern Code Review (MCR)は、オープンソースと商用の両方で共通のプラクティスとして採用されている。
コードレビューは、様々な社会的技術的要因のために完了するのにかなりの遅延を経験することができる。
コードレビューの完了に必要な時間を見積もるためのツールサポートが不足している。
論文 参考訳(メタデータ) (2021-09-30T14:00:56Z) - Deep Just-In-Time Inconsistency Detection Between Comments and Source
Code [51.00904399653609]
本稿では,コード本体の変更によりコメントが矛盾するかどうかを検出することを目的とする。
私たちは、コメントとコードの変更を関連付けるディープラーニングアプローチを開発しています。
より包括的な自動コメント更新システムを構築するために,コメント更新モデルと組み合わせて提案手法の有用性を示す。
論文 参考訳(メタデータ) (2020-10-04T16:49:28Z) - Code Review in the Classroom [57.300604527924015]
教室設定の若い開発者は、コードレビュープロセスの潜在的に有利で問題のある領域の明確な図を提供している。
彼らのフィードバックは、プロセスはプロセスを改善するためにいくつかのポイントで十分に受け入れられていることを示唆している。
本論文は,教室でコードレビューを行うためのガイドラインとして利用することができる。
論文 参考訳(メタデータ) (2020-04-19T06:07:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。