OpenAPMax: Abnormal Patterns-based Model for Real-World Alzheimer's
Disease Diagnosis
- URL: http://arxiv.org/abs/2307.00936v1
- Date: Mon, 3 Jul 2023 11:21:09 GMT
- Title: OpenAPMax: Abnormal Patterns-based Model for Real-World Alzheimer's
Disease Diagnosis
- Authors: Yunyou Huang, Xianglong Guan, Xiangjiang Lu, Xiaoshuang Liang, Xiuxia
Miao, Jiyue Xie, Wenjing Liu, Li Ma, Suqin Tang, Zhifei Zhang, and Jianfeng
Zhan
- Abstract summary: We propose an open-set recognition model, OpenAPMax, based on the anomaly pattern to address Alzheimer's disease diagnosis.
We evaluate the performance of the proposed method with recent open-set recognition, where we obtain state-of-the-art results.
- Score: 9.316162293112738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's disease (AD) cannot be reversed, but early diagnosis will
significantly benefit patients' medical treatment and care. In recent works, AD
diagnosis has the primary assumption that all categories are known a prior -- a
closed-set classification problem, which contrasts with the open-set
recognition problem. This assumption hinders the application of the model in
natural clinical settings. Although many open-set recognition technologies have
been proposed in other fields, they are challenging to use for AD diagnosis
directly since 1) AD is a degenerative disease of the nervous system with
similar symptoms at each stage, and it is difficult to distinguish from its
pre-state, and 2) diversified strategies for AD diagnosis are challenging to
model uniformly. In this work, inspired by the concerns of clinicians during
diagnosis, we propose an open-set recognition model, OpenAPMax, based on the
anomaly pattern to address AD diagnosis in real-world settings. OpenAPMax first
obtains the abnormal pattern of each patient relative to each known category
through statistics or a literature search, clusters the patients' abnormal
pattern, and finally, uses extreme value theory (EVT) to model the distance
between each patient's abnormal pattern and the center of their category and
modify the classification probability. We evaluate the performance of the
proposed method with recent open-set recognition, where we obtain
state-of-the-art results.
Related papers
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Multimodal Neurodegenerative Disease Subtyping Explained by ChatGPT [15.942849233189664]
Alzheimer's disease is the most prevalent neurodegenerative disease.
Current data driven approaches are able to classify the subtypes at later stages of AD or related disorders, but struggle when predicting at the asymptomatic or prodromal stage.
We propose a multimodal framework that uses early-stage indicators such as imaging, genetics and clinical assessments to classify AD patients into subtypes at early stages.
arXiv Detail & Related papers (2024-01-31T19:30:04Z) - OpenClinicalAI: An Open and Dynamic Model for Alzheimer's Disease
Diagnosis [11.775648630734949]
Alzheimer's disease (AD) cannot be reversed or cured, but timely diagnosis can significantly reduce the burden of treatment and care.
Current research on AD diagnosis models usually regards the diagnosis task as a typical classification task.
We propose OpenClinicalAI for direct AD diagnosis in complex and uncertain clinical settings.
arXiv Detail & Related papers (2023-07-03T12:35:03Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - DxFormer: A Decoupled Automatic Diagnostic System Based on
Decoder-Encoder Transformer with Dense Symptom Representations [26.337392652262103]
A diagnosis-oriented dialogue system queries the patient's health condition and makes predictions about possible diseases through continuous interaction with the patient.
We propose a decoupled automatic diagnostic framework DxFormer, which divides the diagnosis process into two steps: symptom inquiry and disease diagnosis.
Our proposed model can effectively learn doctors' clinical experience and achieve the state-of-the-art results in terms of symptom recall and diagnostic accuracy.
arXiv Detail & Related papers (2022-05-08T01:52:42Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
We propose an end-to-end deep learning approach for automated diagnosis of Alzheimer's disease (AD) and localization of important brain regions related to the disease from sMRI data.
Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI)
The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods.
arXiv Detail & Related papers (2021-07-28T07:19:00Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.