Utilizing Sequential Information of General Lab-test Results and Diagnoses History for Differential Diagnosis of Dementia
- URL: http://arxiv.org/abs/2502.15317v2
- Date: Tue, 04 Mar 2025 09:20:44 GMT
- Title: Utilizing Sequential Information of General Lab-test Results and Diagnoses History for Differential Diagnosis of Dementia
- Authors: Yizong Xing, Dhita Putri Pratama, Yuke Wang, Yufan Zhang, Brian E. Chapman,
- Abstract summary: Early diagnosis of Alzheimer's Disease (AD) faces multiple data-related challenges.<n>These challenges are exacerbated by the progressive nature of AD, where subtle pathophysiological changes often precede clinical symptoms by decades.<n>This study proposes a novel approach that takes advantage of routinely collected general laboratory test histories.
- Score: 4.580825763935592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early diagnosis of Alzheimer's Disease (AD) faces multiple data-related challenges, including high variability in patient data, limited access to specialized diagnostic tests, and overreliance on single-type indicators. These challenges are exacerbated by the progressive nature of AD, where subtle pathophysiological changes often precede clinical symptoms by decades. To address these limitations, this study proposes a novel approach that takes advantage of routinely collected general laboratory test histories for the early detection and differential diagnosis of AD. By modeling lab test sequences as "sentences", we apply word embedding techniques to capture latent relationships between tests and employ deep time series models, including long-short-term memory (LSTM) and Transformer networks, to model temporal patterns in patient records. Experimental results demonstrate that our approach improves diagnostic accuracy and enables scalable and costeffective AD screening in diverse clinical settings.
Related papers
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - Statistical testing on generative AI anomaly detection tools in Alzheimer's Disease diagnosis [16.73336092521471]
generative AI has shown promise in anomaly detection in medical imaging.
We propose to solve this issue with selective inference and develop a reliable generative AI method for Alzheimer's prediction.
arXiv Detail & Related papers (2024-10-17T09:15:09Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Detecting and clustering swallow events in esophageal long-term high-resolution manometry [48.688209040613216]
We propose a Deep Learning based swallowing detection method to accurately identify swallowing events and secondary non-deglutitive-induced esophageal motility disorders.
We evaluate our computational pipeline on a total of 25 LTHRMs, which were meticulously annotated by medical experts.
arXiv Detail & Related papers (2024-05-02T09:41:31Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - OpenAPMax: Abnormal Patterns-based Model for Real-World Alzheimer's
Disease Diagnosis [9.316162293112738]
We propose an open-set recognition model, OpenAPMax, based on the anomaly pattern to address Alzheimer's disease diagnosis.
We evaluate the performance of the proposed method with recent open-set recognition, where we obtain state-of-the-art results.
arXiv Detail & Related papers (2023-07-03T11:21:09Z) - Tensor-Based Multi-Modality Feature Selection and Regression for
Alzheimer's Disease Diagnosis [25.958167380664083]
We propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI)
We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities.
arXiv Detail & Related papers (2022-09-23T02:17:27Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
Alzheimer's disease (AD) is one of the major causes of dementia and is characterized by slow progression over several years.
We propose a novel computational framework that can predict the phenotypic measurements of MRI biomarkers and trajectories of clinical status.
arXiv Detail & Related papers (2020-05-06T08:08:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.