論文の概要: Scalable quantum neural networks by few quantum resources
- arxiv url: http://arxiv.org/abs/2307.01017v1
- Date: Mon, 3 Jul 2023 13:47:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-05 12:47:41.494711
- Title: Scalable quantum neural networks by few quantum resources
- Title(参考訳): 少数の量子リソースによるスケーラブル量子ニューラルネットワーク
- Authors: Davide Pastorello and Enrico Blanzieri
- Abstract要約: 本稿では,数量子ビット上で複数のスワップテストを実行するための一般パラメトリックモデルの構築に着目する。
このモデルは、小さな量子モジュールを組み合わせた2層フィードフォワードニューラルネットワークと等価であることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the construction of a general parametric model that can
be implemented executing multiple swap tests over few qubits and applying a
suitable measurement protocol. The model turns out to be equivalent to a
two-layer feedforward neural network which can be realized combining small
quantum modules. The advantages and the perspectives of the proposed quantum
method are discussed.
- Abstract(参考訳): 本稿では,数量子ビットで複数のスワップテストを実行し,適切な測定プロトコルを適用した一般パラメトリックモデルの構築に焦点をあてる。
このモデルは、小さな量子モジュールを組み合わせることで実現できる2層フィードフォワードニューラルネットワークと同値であることが判明した。
提案手法の利点と展望について論じる。
関連論文リスト
- The Impact of Architecture and Cost Function on Dissipative Quantum Neural Networks [0.016385815610837167]
本稿では,各ビルディングブロックが任意の量子チャネルを実装可能な,散逸型量子ニューラルネットワーク(DQNN)の新しいアーキテクチャを提案する。
アイソメトリの多目的な1対1パラメトリ化を導出し,提案手法の効率的な実装を可能にした。
論文 参考訳(メタデータ) (2025-02-13T17:38:48Z) - Quantum Latent Diffusion Models [65.16624577812436]
本稿では,古典的潜伏拡散モデルの確立した考え方を活用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
この結果は、量子バージョンが生成した画像のより良い測定値を得ることによって証明されたように、量子バージョンを使用することの利点を示している。
論文 参考訳(メタデータ) (2025-01-19T21:24:02Z) - Training the parametric interactions in an analog bosonic quantum neural network with Fock basis measurement [0.9786690381850356]
本稿では, ボソニックモードの活用とFockベース測定の実施を提案し, モード数に対する指数関数的な特徴の抽出を可能にした。
これらのパラメータは、物理次元が異なるにもかかわらず、複雑さを増すようなベンチマークタスクを解決するために凝集的に訓練できることを実証する。
論文 参考訳(メタデータ) (2024-11-28T12:59:19Z) - Neural networks for Bayesian quantum many-body magnetometry [0.0]
絡み合った量子多体系は、個々の量子検出器のアンサンブルで達成可能な精度よりも大きいパラメータを推定できるセンサーとして使用できる。
このことは、ベイズ推論手法の適用性を妨げうる複雑さを伴っている。
量子多体センサの力学を忠実に再現するニューラルネットワークを用いて、これらの問題を回避する方法を示す。
論文 参考訳(メタデータ) (2022-12-22T22:13:49Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Entanglement Forging with generative neural network models [0.0]
ハイブリッド量子-古典的変分アンゼ」は、量子リソースオーバーヘッドを下げるために絡み合いを鍛えることができることを示す。
この方法は観測者の期待値の固定精度を達成するのに必要な測定値の数で効率的である。
論文 参考訳(メタデータ) (2022-05-02T14:29:17Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Solving Quantum Master Equations with Deep Quantum Neural Networks [0.0]
我々は、オープンな量子多体系の混合状態を表現するために、普遍的な量子計算が可能なディープ量子フィードフォワードニューラルネットワークを使用する。
量子ネットワークの特別な構造を所有するこのアプローチは、バレン高原の欠如など、多くの注目すべき特徴を享受している。
論文 参考訳(メタデータ) (2020-08-12T18:00:08Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。