論文の概要: Entanglement Forging with generative neural network models
- arxiv url: http://arxiv.org/abs/2205.00933v1
- Date: Mon, 2 May 2022 14:29:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 20:42:42.806366
- Title: Entanglement Forging with generative neural network models
- Title(参考訳): 生成ニューラルネットワークモデルを用いた絡み合わせ鍛造
- Authors: Patrick Huembeli, Giuseppe Carleo, Antonio Mezzacapo
- Abstract要約: ハイブリッド量子-古典的変分アンゼ」は、量子リソースオーバーヘッドを下げるために絡み合いを鍛えることができることを示す。
この方法は観測者の期待値の固定精度を達成するのに必要な測定値の数で効率的である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The optimal use of quantum and classical computational techniques together is
important to address problems that cannot be easily solved by quantum
computations alone. This is the case of the ground state problem for quantum
many-body systems. We show here that probabilistic generative models can work
in conjunction with quantum algorithms to design hybrid quantum-classical
variational ans\"atze that forge entanglement to lower quantum resource
overhead. The variational ans\"atze comprise parametrized quantum circuits on
two separate quantum registers, and a classical generative neural network that
can entangle them by learning a Schmidt decomposition of the whole system. The
method presented is efficient in terms of the number of measurements required
to achieve fixed precision on expected values of observables. To demonstrate
its effectiveness, we perform numerical experiments on the transverse field
Ising model in one and two dimensions, and fermionic systems such as the t-V
Hamiltonian of spinless fermions on a lattice.
- Abstract(参考訳): 量子計算と古典計算の最適利用は、量子計算だけでは簡単には解けない問題に対処するために重要である。
これは、量子多体系の基底状態問題の場合である。
ここでは、確率的生成モデルが量子アルゴリズムと連携して、量子資源オーバーヘッドを下げるために絡み合いを鍛えるハイブリッド量子古典的変分 ans\atze を設計できることを示す。
変分 ans\atze は、2つの異なる量子レジスタ上のパラメタライズド量子回路と、システム全体のシュミット分解を学習することでそれらを絡み合わせることができる古典的生成ニューラルネットワークから構成される。
提案手法は観測可能な期待値の一定精度を達成するのに必要な測定回数の点で効率的である。
その効果を示すために, 1次元および2次元の横磁場イジングモデルと, 格子上のスピンレスフェルミオンのt-vハミルトニアンなどのフェルミオン系について数値実験を行った。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
パラメータ化混合状態に対する量子自然勾配降下の一般化を導入する。
また、堅牢な一階近似アルゴリズム、Quantum-Probabilistic Mirror Descentを提供する。
我々のアプローチは、モデル選択における柔軟性を実現するために、それまでのサンプル効率の手法を拡張しました。
論文 参考訳(メタデータ) (2022-06-09T17:58:15Z) - Expanding variational quantum eigensolvers to larger systems by dividing
the calculations between classical and quantum hardware [0.0]
限られた資源を持つ量子コンピュータ上で、多粒子ハミルトニアンの固有値問題を効率的に解くためのハイブリッド古典量子アルゴリズムを提案する。
このアルゴリズムは、より多くの量子評価を犠牲にして必要となる量子ビット数を減少させる。
論文 参考訳(メタデータ) (2021-12-09T17:37:41Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
変分量子アルゴリズムは、ノイズの多い中間スケール量子コンピュータのパワーを活用することを目的としている。
変分量子固有解法を$N$成分フェルミオンの基底状態特性の研究に応用する。
提案手法は,多体系の電流ベース量子シミュレータの基礎を定式化したものである。
論文 参考訳(メタデータ) (2021-06-29T16:39:30Z) - Solving Quantum Master Equations with Deep Quantum Neural Networks [0.0]
我々は、オープンな量子多体系の混合状態を表現するために、普遍的な量子計算が可能なディープ量子フィードフォワードニューラルネットワークを使用する。
量子ネットワークの特別な構造を所有するこのアプローチは、バレン高原の欠如など、多くの注目すべき特徴を享受している。
論文 参考訳(メタデータ) (2020-08-12T18:00:08Z) - Robust decompositions of quantum states [0.0]
ノイズ量子回路モデルを用いて古典量子複雑性等価性を確立する。
我々は2つの異なる変種を構築し、どちらも機械学習手法と互換性がある。
これらは共に、フォン・ノイマンエントロピーの効率的な計算可能な下界を可能にし、有限温度変分量子モンテカルロ法として使用できる。
論文 参考訳(メタデータ) (2020-03-09T14:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。