Learning Difference Equations with Structured Grammatical Evolution for
Postprandial Glycaemia Prediction
- URL: http://arxiv.org/abs/2307.01238v1
- Date: Mon, 3 Jul 2023 12:22:04 GMT
- Title: Learning Difference Equations with Structured Grammatical Evolution for
Postprandial Glycaemia Prediction
- Authors: Daniel Parra, David Joedicke, J. Manuel Velasco, Gabriel Kronberger,
J. Ignacio Hidalgo
- Abstract summary: Glucose prediction is vital to avoid dangerous post-meal complications in treating individuals with diabetes.
Traditional methods, such as artificial neural networks, have shown high accuracy rates.
We propose a novel glucose prediction method emphasising interpretability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: People with diabetes must carefully monitor their blood glucose levels,
especially after eating. Blood glucose regulation requires a proper combination
of food intake and insulin boluses. Glucose prediction is vital to avoid
dangerous post-meal complications in treating individuals with diabetes.
Although traditional methods, such as artificial neural networks, have shown
high accuracy rates, sometimes they are not suitable for developing
personalised treatments by physicians due to their lack of interpretability. In
this study, we propose a novel glucose prediction method emphasising
interpretability: Interpretable Sparse Identification by Grammatical Evolution.
Combined with a previous clustering stage, our approach provides finite
difference equations to predict postprandial glucose levels up to two hours
after meals. We divide the dataset into four-hour segments and perform
clustering based on blood glucose values for the twohour window before the
meal. Prediction models are trained for each cluster for the two-hour windows
after meals, allowing predictions in 15-minute steps, yielding up to eight
predictions at different time horizons. Prediction safety was evaluated based
on Parkes Error Grid regions. Our technique produces safe predictions through
explainable expressions, avoiding zones D (0.2% average) and E (0%) and
reducing predictions on zone C (6.2%). In addition, our proposal has slightly
better accuracy than other techniques, including sparse identification of
non-linear dynamics and artificial neural networks. The results demonstrate
that our proposal provides interpretable solutions without sacrificing
prediction accuracy, offering a promising approach to glucose prediction in
diabetes management that balances accuracy, interpretability, and computational
efficiency.
Related papers
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Enhancing Wearable based Real-Time Glucose Monitoring via Phasic Image Representation Learning based Deep Learning [4.07484910093752]
In the U.S., over a third of adults are pre-diabetic, with 80% unaware of their status.
Existing wearable glucose monitors are limited by the lack of models trained on small datasets.
arXiv Detail & Related papers (2024-06-12T07:05:53Z) - NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Interpretable Mechanistic Representations for Meal-level Glycemic
Control in the Wild [10.240619571788786]
We propose a hybrid variational autoencoder to learn interpretable representations of CGM and meal data.
Our method grounds the latent space to the inputs of a mechanistic differential equation, producing embeddings that reflect physiological quantities.
Our embeddings produce clusters that are up to 4x better than naive, expert, black-box, and pure mechanistic features.
arXiv Detail & Related papers (2023-12-06T08:36:23Z) - Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning [0.0]
We describe our research with the aim of predicting the future behavior of blood glucose levels, so that hypoglycemic events may be anticipated.
We have tested our proposed method using real data from 4 different diabetes patients with promising results.
arXiv Detail & Related papers (2023-03-30T09:08:31Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Stacked LSTM Based Deep Recurrent Neural Network with Kalman Smoothing
for Blood Glucose Prediction [4.040272012640556]
We propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model.
For the OhioT1DM dataset, containing eight weeks' data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 minutes and 60 minutes of prediction horizon (PH)
Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management.
arXiv Detail & Related papers (2021-01-18T02:31:38Z) - Prediction-Coherent LSTM-based Recurrent Neural Network for Safer
Glucose Predictions in Diabetic People [4.692400531340393]
We propose a LSTM-based recurrent neural network architecture and loss function that enhance the stability of predictions.
The study is conducted on type 1 and type 2 diabetic people, with a focus on predictions made 30-minutes ahead of time.
arXiv Detail & Related papers (2020-09-08T13:14:08Z) - Regularizing Class-wise Predictions via Self-knowledge Distillation [80.76254453115766]
We propose a new regularization method that penalizes the predictive distribution between similar samples.
This results in regularizing the dark knowledge (i.e., the knowledge on wrong predictions) of a single network.
Our experimental results on various image classification tasks demonstrate that the simple yet powerful method can significantly improve the generalization ability.
arXiv Detail & Related papers (2020-03-31T06:03:51Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.